56 research outputs found

    Tenfold magnification of Masson’s trichome staining of acute, 3 weeks, and 3 months follow-up histology.

    No full text
    <p>Acute (A), 3 weeks (B), and 3 months (C) histology results (10x magnification) showing the border zone of lesions in treated vessels. Sections were stained with MST staining. The arrows indicate the border zone. (A) Border zone of lesion immediately after denervation. The border zone is characterized by a red to pink color transition. At the border zone cell depletion is present (white holes). (B) Border zone of lesion three weeks after denervation. The border zone is characterized by a red to light green color transition. At the site of de border zone inflammatory cells are present (tiny dark blue/black spots). (C) Border zone of lesion 3 months after denervation. The border zone is characterized by blue to red color transition. At the border zone increased collagen deposition is present (blue fibers) and the collagen fibers are intertwined the adjacent healthy muscle tissue of the media (red).</p

    Definitions of the parameters used.

    No full text
    <p>APV indicates average peak flow velocity; Paorta, aortic pressure; b, baseline; h, hyperemia</p><p>Definitions of the parameters used.</p

    Overall change in renal hemodynamic parameters directly after renal denervation and after termination.

    No full text
    <p>Continuous variables are displayed as mean ± SD or median (range). The Students T-test or Wilcoxon signed rank test were used for paired samples analysis. APV indicates average peak flow velocity, MR indicates microvascular resistance.</p><p>*Directly after measures compared to baseline measures,</p><p>‡Termination measures compared to baseline measures.</p><p>Overall change in renal hemodynamic parameters directly after renal denervation and after termination.</p

    Immunohistochemical staining of nerves of treated arteries.

    No full text
    <p>Acute (A-D), 3 weeks (E-L) and 3 months (M-P) histology and immunohistochemical staining results of nerves within the lesion area of treated vessels. The rectangular boxes are a 10x magnification of the affected nerves. a-m shows a 2x magnification and n-p a 5x magnification. Immediately after denervation no signs of nerve damage and a scattered presence of inflammatory cells were observed (A). S100 (B), PGP9.5 (C), and TH (D) showed similar staining patterns and the staining intensity was similar to controls. 3 weeks after denervation neural degeneration and inflammation of nerves and perineural tissue (F) was observed. S100 staining intensity of affected nerves was similar to control (F,J) PGP9.5 staining was slightly lower in intensity (G,K)and TH (H,L)staining was weak or absent compared to control. Scattered presence of S100 (j)and PGP9.5 (K) positive neuron cell bodies was observed around a part of the affected nerves. 3 months after denervation the majority of nerves were embedded in thick sheets of fibrotic tissue(M) and there was scattered presence of inflammatory cells (M). S100, PGP9.5, and TH showed similar staining patterns and the staining intensity was similar to controls. Around affected nerves small S100 (N), PGP9.5 (O) and TH (P) positive nerve bundles were present and they were embedded in thick sheet of fibrotic tissue (M).</p

    Nerve damage outside the lesion area.

    No full text
    <p>3 weeks histology results showing a treated vessel with nerve damage outside the lesion area. A 20 x magnification (a-e) zooms in on the affected nerve that is indicated with an arrow in picture 1–6. Serial sections were stained with HE, MST, α-SMA, S100, PGP9.5 and TH. The perineurial tissue and nerves located at the opposite site of the lesion were affected by an extensive inflammatory response (1,A and 2,B), increased proliferation of myofibroblasts (3,C), a reduction in neural tissue (4,D;5,E) and loss of neurotransmitter production of the affected nerves (6).</p

    Acute, 3 weeks, and 3 months follow-up histology results.

    No full text
    <p>Acute (A), 3 weeks (B) and 3 months (C) histology results (2x magnification) showing treated vessels with lesions and control vessels. Serial sections were stained with Haematoxylin Eosin (HE), Masson’s trichome staining (MST) and alpha-smooth muscle actin (α-SMA immunostaining). * = lesion area. (A). HE and MST staining showing a treated vessel with two lesions immediately after denervation. The lesions have a pale color and the media is most affected. MST shows no increased collagen deposition at the site of the lesion (no increased presence of blue fibers). α-SMA staining shows a diffuse increased medial staining at the site of the lesion in treated vessels. (B) HE and MST staining at three weeks follow-up. The media and adventitia of treated vessels are most affected by denervation. MST staining shows increased medial collagen deposition (blue fibers). α-SMA staining shows increased medial, adventitial and perineural staining at the site of the lesion (dark brown). (C) HE and MST staining showing a treated vessel with two lesions 3 months after denervation. MST staining shows transmural collagen deposition at the site of the lesion and the adventitia is most affected. α-SMA staining shows a slightly increased medial staining (dark brown) at the site of the lesion.</p

    Targeting chronic cardiac remodeling with cardiac progenitor cells in a murine model of ischemia/reperfusion injury

    No full text
    <div><p>Background</p><p>Translational failure for cardiovascular disease is a substantial problem involving both high research costs and an ongoing lack of novel treatment modalities. Despite the progress already made, cell therapy for chronic heart failure in the clinical setting is still hampered by poor translation. We used a murine model of chronic ischemia/reperfusion injury to examine the effect of minimally invasive application of cardiac progenitor cells (CPC) in cardiac remodeling and to improve clinical translation.</p><p>Methods</p><p>28 days after the induction of I/R injury, mice were randomized to receive either CPC (0.5 million) or vehicle by echo-guided intra-myocardial injection. To determine retention, CPC were localized <i>in vivo</i> by bioluminescence imaging (BLI) two days after injection. Cardiac function was assessed by 3D echocardiography and speckle tracking analysis to quantify left ventricular geometry and regional myocardial deformation.</p><p>Results</p><p>BLI demonstrated successful injection of CPC (18/23), which were mainly located along the needle track in the anterior/septal wall. Although CPC treatment did not result in overall restoration of cardiac function, a relative preservation of the left ventricular end-diastolic volume was observed at 4 weeks follow-up compared to vehicle control (+5.3 ± 2.1 μl vs. +10.8 ± 1.5 μl). This difference was reflected in an increased strain rate (+16%) in CPC treated mice.</p><p>Conclusions</p><p>CPC transplantation can be adequately studied in chronic cardiac remodeling using this study set-up and by that provide a translatable murine model facilitating advances in research for new therapeutic approaches to ultimately improve therapy for chronic heart failure.</p></div

    Histology and imunnostaining of control arteries.

    No full text
    <p>Histology results and immunostaining of a control vessel. Serial sections were stained for HE, MST, α-SMA, S100, PGP9.5 and TH. Sections show no signs of vessel damage (HE, MST), they have minimal inflammation (HE, MST) and have no increased areas of α-SMA at the media and no staining outside the media, except the arterioles. The nerves show similar staining patterns for structural (S100, PGP9.5) and functional (TH) nerve components.</p

    Progenitor cell numbers in blood and bone marrow.

    No full text
    <p>DM  =  Diabetes Mellitus, PB  =  Peripheral Blood, BM  =  Bone Marrow, WBC  =  White Blood Cell. <sup>#</sup> P<0.05 compared to controls, <sup>##</sup> P<0.01 compared to controls, * P<0.05 compared to baseline, ** P<0.01 compared to baseline.</p
    • …
    corecore