4,153 research outputs found

    A network approach for power grid robustness against cascading failures

    Get PDF
    Cascading failures are one of the main reasons for blackouts in electrical power grids. Stable power supply requires a robust design of the power grid topology. Currently, the impact of the grid structure on the grid robustness is mainly assessed by purely topological metrics, that fail to capture the fundamental properties of the electrical power grids such as power flow allocation according to Kirchhoff's laws. This paper deploys the effective graph resistance as a metric to relate the topology of a grid to its robustness against cascading failures. Specifically, the effective graph resistance is deployed as a metric for network expansions (by means of transmission line additions) of an existing power grid. Four strategies based on network properties are investigated to optimize the effective graph resistance, accordingly to improve the robustness, of a given power grid at a low computational complexity. Experimental results suggest the existence of Braess's paradox in power grids: bringing an additional line into the system occasionally results in decrease of the grid robustness. This paper further investigates the impact of the topology on the Braess's paradox, and identifies specific sub-structures whose existence results in Braess's paradox. Careful assessment of the design and expansion choices of grid topologies incorporating the insights provided by this paper optimizes the robustness of a power grid, while avoiding the Braess's paradox in the system.Comment: 7 pages, 13 figures conferenc

    FLOODING RISK AND HOUSING VALUES: AN ECONOMIC ASSESSMENT OF ENVIRONMENTAL HAZARD

    Get PDF
    Climate change, the ‘boom and bust’ cycles of rivers, and altered water resource management practice have caused significant changes in the spatial distribution of the risk of flooding. Hedonic pricing studies, predominantly for the US, have assessed the spatial incidence of risk and the associated implicit price of flooding risk. Using these implicit price estimates and their associated standard errors, we perform a meta-analysis and find that houses located in the 100-year floodplain have a –0.3 to –0.8% lower price. The actual occurrence of a flooding event or increased stringency in disclosure rules causes ex ante prices to differ from ex post prices, but these effects are small. The marginal willingness to pay for reduced risk exposure has increased over time, and it is slightly lower for areas with a higher per capita income. We show that obfuscating amenity effects and risk exposure associated with proximity to water causes systematic bias in the implicit price of flooding risk.Manufactured Housing; valuation, environmental risk, meta-analysis, hedonic pricing

    Structural transition in interdependent networks with regular interconnections

    Get PDF
    Networks are often made up of several layers that exhibit diverse degrees of interdependencies. A multilayer interdependent network consists of a set of graphs GG that are interconnected through a weighted interconnection matrix B B , where the weight of each inter-graph link is a non-negative real number p p . Various dynamical processes, such as synchronization, cascading failures in power grids, and diffusion processes, are described by the Laplacian matrix Q Q characterizing the whole system. For the case in which the multilayer graph is a multiplex, where the number of nodes in each layer is the same and the interconnection matrix B=pI B=pI , being I I the identity matrix, it has been shown that there exists a structural transition at some critical coupling, p p^* . This transition is such that dynamical processes are separated into two regimes: if p>p p > p^* , the network acts as a whole; whereas when p<p p<p^* , the network operates as if the graphs encoding the layers were isolated. In this paper, we extend and generalize the structural transition threshold p p^* to a regular interconnection matrix B B (constant row and column sum). Specifically, we provide upper and lower bounds for the transition threshold p p^* in interdependent networks with a regular interconnection matrix B B and derive the exact transition threshold for special scenarios using the formalism of quotient graphs. Additionally, we discuss the physical meaning of the transition threshold p p^* in terms of the minimum cut and show, through a counter-example, that the structural transition does not always exist. Our results are one step forward on the characterization of more realistic multilayer networks and might be relevant for systems that deviate from the topological constrains imposed by multiplex networks.Comment: 13 pages, APS format. Submitted for publicatio

    Constructing a no-reference H.264/AVC bitstream-based video quality metric using genetic programming-based symbolic regression

    Get PDF
    In order to ensure optimal quality of experience toward end users during video streaming, automatic video quality assessment becomes an important field-of-interest to video service providers. Objective video quality metrics try to estimate perceived quality with high accuracy and in an automated manner. In traditional approaches, these metrics model the complex properties of the human visual system. More recently, however, it has been shown that machine learning approaches can also yield competitive results. In this paper, we present a novel no-reference bitstream-based objective video quality metric that is constructed by genetic programming-based symbolic regression. A key benefit of this approach is that it calculates reliable white-box models that allow us to determine the importance of the parameters. Additionally, these models can provide human insight into the underlying principles of subjective video quality assessment. Numerical results show that perceived quality can be modeled with high accuracy using only parameters extracted from the received video bitstream

    Current induced transverse spin-wave instability in thin ferromagnets: beyond linear stability analysis

    Full text link
    A sufficiently large unpolarized current can cause a spin-wave instability in thin nanomagnets with asymmetric contacts. The dynamics beyond the instability is understood in the perturbative regime of small spin-wave amplitudes, as well as by numerically solving a discretized model. In the absence of an applied magnetic field, our numerical simulations reveal a hierarchy of instabilities, leading to chaotic magnetization dynamics for the largest current densities we consider.Comment: 14 pages, 10 figures; revtex

    A Topological Investigation of Phase Transitions of Cascading Failures in Power Grids

    Full text link
    Cascading failures are one of the main reasons for blackouts in electric power transmission grids. The economic cost of such failures is in the order of tens of billion dollars annually. The loading level of power system is a key aspect to determine the amount of the damage caused by cascading failures. Existing studies show that the blackout size exhibits phase transitions as the loading level increases. This paper investigates the impact of the topology of a power grid on phase transitions in its robustness. Three spectral graph metrics are considered: spectral radius, effective graph resistance and algebraic connectivity. Experimental results from a model of cascading failures in power grids on the IEEE power systems demonstrate the applicability of these metrics to design/optimize a power grid topology for an enhanced phase transition behavior of the system

    Andreev reflection from non-centrosymmetric superconductors and Majorana bound state generation in half-metallic ferromagnets

    Full text link
    We study Andreev reflection at an interface between a half metal and a superconductor with spin-orbit interaction. While the absence of minority carriers in the half metal makes singlet Andreev reflection impossible, the spin-orbit interaction gives rise to triplet Andreev reflection, i.e., the reflection of a majority electron into a majority hole or vice versa. As an application of our calculation, we consider a thin half metal film or wire laterally attached to a superconducting contact. If the half metal is disorder free, an excitation gap is opened that is proportional to the spin-orbit interaction strength in the superconductor. For electrons with energy below this gap a lateral half-metal--superconductor contact becomes a perfect triplet Andreev reflector. We show that the system supports localized Majorana end states in this limit.Comment: 14 pages, 3 figure

    Value and risk reporting practice among listed companies in Belgium.

    Get PDF
    In this report we describe the general practices, among Belgian public firms, re voluntary disclosure. We provide an overall score, a subtotal for each of ten information categories, and individual scores. We find that only two subtotals, Management & Performance and Organization & Strategy, fare rather well almost across the board. The value drivers, in contrast, tend to come in among the lowest-ranked items, as does Risk Management. For two value drivers, Brands and Customers, around half of the companies even remain utterly silent. Across firms, there often is a pronounced right-skewness among the rankings for one subcategory. On more than half the items that could logically help determine value, more than half of the firms provide no information whatsoever.The top-performing companies are doing spectacularly better on Risk Management, and (relatively) worse on macro information. Manufacturing firms do best, both in terms of total rating as well as on most subcategories, followed by retail/distribution/media (RDM) and then Technology.Optimal; Value; Risk; Reporting; Companies; Firms; Disclosure; Information; Management; Performance; Strategy; Risk management; Brands; Manufacturing;

    Interplay between Kondo effect and Ruderman-Kittel-Kasuya-Yosida interaction

    Full text link
    The interplay between the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction and the Kondo effect is expected to provide the driving force for the emergence of many phenomena in strongly correlated electron materials. Two magnetic impurities in a metal are the smallest possible system containing all these ingredients and define a bottom up approach towards a long term understanding of concentrated / dense systems. Here we report on the experimental and theoretical investigation of iron dimers buried below a Cu(100) surface by means of low temperature scanning tunnelling spectroscopy (STS) combined with density functional theory (DFT) and numerical renormalization group (NRG) calculations. The Kondo effect, in particular the width of the Abrikosov-Suhl resonance, is strongly altered or even suppressed due to magnetic coupling between the impurities. It oscillates as function of dimer separation revealing that it is related to the RKKY interaction mediated by the conduction electrons. Simulations based on density functional theory support this concept showing the same oscillation period and trends in the coupling strength as found in the experiment
    corecore