97 research outputs found

    Microbial Contamination in the Spacecraft

    Get PDF
    Spacecraft and space habitats supporting human exploration contain a diverse population of microorganisms. Microorganisms may threaten human habitation in many ways that directly or indirectly impact the health, safety, or performance of astronauts. The ability to produce and maintain spacecraft and space stations with environments suitable for human habitation has been established over 40 years of human spaceflight. An extensive database of environmental microbiological parameters has been provided for short-term (< 20 days) spaceflight by more than 100 missions aboard the Space Shuttle. The NASA Mir Program provided similar data for long-duration missions. Interestingly, the major bacterial and fungal species found in the Space Shuttle are similar to those encountered in the nearly 15-year-old Mir. Lessons learned from both the US and Russian space programs have been incorporated into the habitability plan for the International Space Station. The focus is on preventive measures developed for spacecraft, cargo, and crews. On-orbit regular housekeeping practices complete with visual inspections are essential, along with microbiological monitoring. Risks associated with extended stays on the Moon or a Mars exploration mission will be much greater than previous experiences because of additional unknown variables. The current knowledge base is insufficient for exploration missions, and research is essential to understand the effects of spaceflight on biological functions and population dynamics of microorganisms in spacecraft

    Kinetic tetrazolium microtiter assay

    Get PDF
    A method for conducting an in vitro cell assay using a tetrazolium indicator is disclosed. The indicator includes a nonionic detergent which solubilizes a tetrazolium reduction product in vitro and has low toxicity for the cells. The incubation of test cells in the presence of zolium bromide and octoxynol (TRITON X-100) permits kinetics of the cell metabolism to be determined

    Infectious Disease Risk Associated with Space Flight

    Get PDF
    This slide presentation opens with views of the shuttle in various stages of preparation for launch, a few moments after launch prior to external fuel tank separation, a few pictures of the earth,and several pictures of astronomical interest. The presentation reviews the factors effecting the risks of infectious disease during space flight, such as the crew, water, food, air, surfaces and payloads and the factors that increase disease risk, the factors affecting the risk of infectious disease during spaceflight, and the environmental factors affecting immunity, such as stress. One factor in space infectious disease is latent viral reactivation, such as herpes. There are comparisons of the incidence of viral reactivation in space, and in other analogous situations (such as bed rest, or isolation). There is discussion of shingles, and the pain and results of treatment. There is a further discussion of the changes in microbial pathogen characteristics, using salmonella as an example of the increased virulence of microbes during spaceflight. A factor involved in the risk of infectious disease is stress

    Solution Preserves Nucleic Acids in Body-Fluid Specimens

    Get PDF
    A solution has been formulated to preserve deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) in specimens of blood, saliva, and other bodily fluids. Specimens of this type are collected for diagnostic molecular pathology, which is becoming the method of choice for diagnosis of many diseases. The solution makes it possible to store such specimens at room temperature, without risk of decomposition, for subsequent analysis in a laboratory that could be remote from the sampling location. Thus, the solution could be a means to bring the benefits of diagnostic molecular pathology to geographic regions where refrigeration equipment and diagnostic laboratories are not available. The table lists the ingredients of the solution. The functions of the ingredients are the following: EDTA chelates divalent cations that are necessary cofactors for nuclease activity. In so doing, it functionally removes these cations and thereby retards the action of nucleases. EDTA also stabilizes the DNA helix. Tris serves as a buffering agent, which is needed because minor contaminants in an unbuffered solution can exert pronounced effects on pH and thereby cause spontaneous degradation of DNA. SDS is an ionic detergent that inhibits ribonuclease activity. SDS has been used in some lysis buffers and as a storage buffer for RNA after purification. The use of the solution is straightforward. For example, a sample of saliva is collected by placing a cotton roll around in the subject's mouth until it becomes saturated, then the cotton is placed in a collection tube. Next, 1.5 mL of the solution are injected directly into the cotton and the tube is capped for storage at room temperature. The effectiveness of the solution has been demonstrated in tests on specimens of saliva containing herpes simplex virus. In the tests, the viral DNA, as amplified by polymerase chain reaction, was detected even after storage for 120 days

    Quality requirements for reclaimed/recycled water

    Get PDF
    Water used during current and previous space missions has been either carried or made aloft. Future human space endeavors will require some form of water reclamation and recycling. There is little experience in the U.S. space program with this technology. Water reclamation and recycling constitute engineering challenges of the broadest nature that will require an intensive research and development effort if this technology is to mature in time for practical use on the proposed U.S. Space Station. In order for this to happen, reclaimed/recycled water specifications will need to be devised to guide engineering development. Present NASA Potable Water Specifications are not applicable to reclaimed or recycled water. Adequate specifications for ensuring the quality of the reclaimed or recycled potable water system is reviewed, limitations of present water specifications are examined, world experience with potable water reclamation/recycling systems and systems analogs is reviewed, and an approach to developing pertinent biomedical water specifications for spacecraft is presented. Space Station water specifications should be designed to ensure the health of all likely spacecraft inhabitants including man, animals, and plants

    Saliva Preservative for Diagnostic Purposes

    Get PDF
    Saliva is an important body fluid for diagnostic purposes. Glycoproteins, glucose, steroids, DNA, and other molecules of diagnostic value are found in saliva. It is easier to collect as compared to blood or urine. Unfortunately, saliva also contains large numbers of bacteria that can release enzymes, which can degrade proteins and nucleic acids. These degradative enzymes destroy or reduce saliva s diagnostic value. This innovation describes the formulation of a chemical preservative that prevents microbial growth and inactivates the degradative enzymes. This extends the time that saliva can be stored or transported without losing its diagnostic value. Multiple samples of saliva can be collected if needed without causing discomfort to the subject and it does not require any special facilities to handle after it is collected

    Chamber for Growing and Observing Fungi

    Get PDF
    A chamber has been designed to enable growth and observation of microcolonies of fungi in isolation from the external environment. Unlike prior fungus-growing apparatuses, this chamber makes it possible to examine a fungus culture without disrupting it. Partly resembling a small picture frame, the chamber includes a metal plate having a rectangular through-thethickness opening with recesses for a top and a bottom cover glass, an inlet for air, and an inlet for water. The bottom cover glass is put in place and held there by clips, then a block of nutrient medium and a moisture pad are placed in the opening. The block is inoculated, then the top cover glass is put in place and held there by clips. Once growth is evident, the chamber can be sealed with tape. Little (if any) water evaporates past the edges of the cover glasses, and, hence there is little (if any) need to add water. A microscope can be used to observe the culture through either cover glass. Because the culture is sealed in the chamber, it is safe to examine the culture without risking contamination. The chamber can be sterilized and reused

    Latent Herpes Viruses Reactivation in Astronauts

    Get PDF
    Space flight has many adverse effects on human physiology. Changes in multiple systems, including the cardiovascular, musculoskeletal, neurovestibular, endocrine, and immune systems have occurred (12, 32, 38, 39). Alterations in drug pharmacokinetics and pharmacodynamics (12), nutritional needs (31), renal stone formation (40), and microbial flora (2) have also been reported. Evidence suggests that the magnitude of some changes may increase with time in space. A variety of changes in immunity have been reported during both short (.16 days) and long (>30 days) space missions. However, it is difficult to determine the medical significance of these immunological changes in astronauts. Astronauts are in excellent health and in superb physical condition. Illnesses in astronauts during space flight are not common, are generally mild, and rarely affect mission objectives. In an attempt to clarify this issue, we identified the latent herpes viruses as medically important indicators of the effects of space flight on immunity. This chapter demonstrates that space flight leads to asymptomatic reactivation of latent herpes viruses, and proposes that this results from marked changes in neuroendocrine function and immunity caused by the inherent stressfullness of human space flight. Astronauts experience uniquely stressful environments during space flight. Potential stressors include confinement in an unfamiliar, crowded environment, isolation, separation from family, anxiety, fear, sleep deprivation, psychosocial issues, physical exertion, noise, variable acceleration forces, increased radiation, and others. Many of these are intermittent and variable in duration and intensity, but variable gravity forces (including transitions from launch acceleration to microgravity and from microgravity to planetary gravity) and variable radiation levels are part of each mission and contribute to a stressful environment that cannot be duplicated on Earth. Radiation outside the Earth's magnetosphere is particularly worrisome because it includes ionizing radiation from cosmic galactic radiation. Increased stress levels appear even before flight, presumably from the rigors of preflight training and the anticipation of the mission (12, 32, 38, 39). Space flight causes significant changes in human immune function (32), but the means by which these changes come about have been difficult to discern. Consistent indicators of stress associated with space flight include increased production of stress hormones, and changes in cells of the immune system. These changes include elevated white blood cell (WBC) and neutrophil counts at landing (15, 16, 35, 37). Activation of generalized stress responses before, during, and after space flight probably affects the function of the immune system. Space flight has been shown to decrease many aspects of immune function, including natural killer (NK) cell activity, interferon production, the blastogenic response of leukocytes to mitogens, cell-mediated immunity, neutrophil function and monocyte function (5, 16, 18, 21, 35-37)

    Extended duration orbiter medical project Microbial Air Sampler (STS-50/USML-1)

    Get PDF
    The Microbial Air Sampler was used on mission days 1, 7, and 13 in the Spacelab during STS-50/USML-1. Microbial air samples were collected using two types of media strips containing agar (Rose Bengal for yeast and molds, TSA for bacteria). The bacterial level found on day 1 was lower than experienced on previous Spacelab missions. A high level of fungi was present on day 1, however subsequent samples on days 7 and 13 did not indicate fungal growth. Bacterial growth was also minimized in this microgravity environment as the mission progressed. No pathogenic microorganisms were isolated, and the health risk from airborne microbes was minimal throughout the mission

    Changes in Neutrophil Functions in Astronauts

    Get PDF
    Neutrophil functions (phagocytosis, oxidative burst, degranulation) and expression of surface markers involved in these functions were studied in 25 astronauts before and after 4 space shuttle missions. Space flight duration ranged from 5 to 11 days. Blood specimens were obtained 10 days before launch (preflight or L-10), immediately after landing (landing or R+0), and again at 3 days after landing (postflight or R+3). Blood samples were also collected from 9 healthy low-stressed subjects at 3 time points simulating a 10-day shuttle mission. The number of neutrophils increased at landing by 85 percent when compared to the preflight numbers. Neutrophil functions were studied in whole blood using flow cytometric methods. Phagocytosis of E.coli-FITC and oxidative burst capacity of the neutrophils following the 9 to 11 day missions were lower at all three sampling points than the mean values for control subjects. Phagocytosis and oxidative burst capacity of the astronauts was decreased even 10-days before space flight. Mission duration appears to be a factor in phagocytic and oxidative functions. In contrast, following the short-duration (5-days) mission, these functions were unchanged from control values. No consistent changes in degranulation were observed following either short or medium length space missions. The expression of CD16, CD32, CD11a, CD11b, CD11c, L-selectin and CD36 was measured and found to be variable. Specifically, CD16 and CD32 did not correlate with the changes in oxidative burst and phagocytosis. We can conclude from this study that the stresses associated with space flight can alter the important functions of neutrophils
    corecore