160 research outputs found

    Crystal structure of monoclinic calcium pyrophosphate dihydrate (m-CPPD) involved in inflammatory reactions and osteoarthritis

    Get PDF
    Pure monoclinic calcium pyrophosphate dihydrate (m-CPPD) has been synthesized and characterized by synchrotron powder X-ray diffraction and neutron diffraction. Rietveld refinement of complementary diffraction data has, for the first time, allowed the crystal structure of m-CPPD to be solved. The monoclinic system P21/n was confirmed and unit-cell parameters determined: a = 12.60842 (4), b = 9.24278 (4), c = 6.74885 (2) Å and β = 104.9916 (3)°. Neutron diffraction data especially have allowed the precise determination of the position of H atoms in the structure. The relationship between the m-CPPD crystal structure and that of the triclinic calcium pyrophosphate dihydrate (t-CPPD) phase as well as other pyrophosphate phases involving other divalent cations are discussed by considering the inflammatory potential of these phases and/or their involvement in different diseases. These original structural data represent a key step in the understanding of the mechanisms of crystal formation involved in different types of arthritis and to improve early detection of calcium pyrophosphate (CPP) phases in vivo

    Crystallisation of a highly metastable hydrated calcium pyrophosphate phase

    Get PDF
    A simple and fast synthesis method was set up to obtain pure hydrated calcium pyrophosphate (CPP)phases of biological interest. This work focused on a specific phase synthesised at 25 uC and pH 4.5 in a stirred tank reactor. Powder X-ray diffraction, FTIR spectroscopy, scanning electron microscopy and thermogravimetric analyses revealed that the phase is unknown but presents similarities with a monoclinic tetrahydrated CPP phase (Ca2P2O7?4H2O, m-CPPT b phase) synthesised under the same conditions of pH and temperature. Characterisation of the unreferenced phase (u-CPP) has been performed, especially to better identify its composition, structure and stability, as well as its possible relation to the m-CPPT b phase or to other hydrated CPP phases

    Structure of the calcium pyrophosphate monohydrate phase (Ca2P2O7·H2O): towards understanding the dehydration process in calcium pyrophosphate hydrates

    Get PDF
    Calcium pyrophosphate hydrate (CPP, Ca2P2O7·nH2O) and calcium orthophosphate compounds (including apatite, octa­calcium phosphate etc.) are among the most prevalent pathological calcifications in joints. Even though only two dihydrated forms of CPP (CPPD) have been detected in vivo (monoclinic and triclinic CPPD), investigations of other hydrated forms such as tetra­hydrated or amorphous CPP are relevant to a further understanding of the physicochemistry of those phases of biological inter­est. The synthesis of single crystals of calcium pyrophosphate monohydrate (CPPM; Ca2P2O7·H2O) by diffusion in silica gel at ambient temperature and the structural analysis of this phase are reported in this paper. Complementarily, data from synchrotron X-ray diffraction on a CPPM powder sample have been fitted to the crystal parameters. Finally, the relationship between the resolved structure for the CPPM phase and the structure of the tetra­hydrated calcium pyrophosphate [beta] phase (CPPT-[beta]) is discussed

    Heterochromatic Genes Undergo Epigenetic Changes and Escape Silencing in Immunodeficiency, Centromeric Instability, Facial Anomalies (ICF) Syndrome

    Get PDF
    Immunodeficiency, Centromeric Instability, Facial Anomalies (ICF) syndrome is a rare autosomal recessive disorder that is characterized by a marked immunodeficiency, severe hypomethylation of the classical satellites 2 and 3 associated with disruption of constitutive heterochromatin, and facial anomalies. Sixty percent of ICF patients have mutations in the DNMT3B (DNA methyltransferase 3B) gene, encoding a de novo DNA methyltransferase

    Synthesis and Characterisation of Hydrated Calcium Pyrophosphate Phases of Biological Interest

    Get PDF
    The details of a synthesis method for biologically relevant hydrated calcium pyrophosphates (CPPs, Ca2P2O7·nH2O) has been elucidated. Control of the pH (from 3.6 to 5.8) and the temperature (from 25 to 90 °C) during the synthesis enabled the preparation of four pure CPP phases within one hour without intermediates: monoclinic and triclinic calcium pyrophosphate dihydrate (CPPD, Ca2P2O7·2H2O), which are the two CPP phases detected in vivo in joints of arthritic patients, monoclinic tetrahydrate β (CPPT, Ca2P2O7·4H2O) and an amorphous phase (a-CPP, Ca2P2O7·nH2O). Four domains corresponding to the four different phases of hydrated calcium pyrophosphate were identified; a-CPP was synthesised over a very wide pH and temperature range (up to 90 °C) within the domain of synthesis conditions explored, including physiological conditions (pH 7.4 and 37 °C). The as-synthesised hydrated CPP phases were characterised by complementary techniques (powder X-ray diffraction, FTIR and Raman spectroscopy, scanning electron microscopy and thermogravimetry) and chemical analyses. Rietveld refinement analyses of the as-synthesised crystalline phases were performed, andthere were significant differences between the m-CPPD Xray diffraction pattern observed and previously published cell parameters. Vibrational spectroscopy allowed the crystalline and amorphous phases synthesised to be clearly distinguished and identified owing to the high flexibility of the pyrophosphate anion. Chemical analyses showed that the synthesis conditions used in this study did not allow significant hydrolysis of the pyrophosphate ions into phosphate ions, and the number of water molecules associated with each synthesised CPP phase was determined by thermogravimetric analysis. Different mechanisms of dehydration were also identified. The study of the formation of synthetic and well-characterised hydrated calcium pyrophosphate phases and their availability in large amounts in vitro could allow progress to be made on the biological role of these phases and their possible transformations. This could also aid their detection in patients suffering from disease caused by calcium salt crystals and could clarify the mechanism by which CPP crystals form and evolve in vivo

    1H-13C NMR-based urine metabolic profiling in autism spectrum disorders.

    Get PDF
    International audienceAutism Spectrum Disorders (ASD) are a group of developmental disorders caused by environmental and genetic factors. Diagnosis is based on behavioral and developmental signs detected before 3 years of age with no reliable biological marker. The purpose of this study was to evaluate the potential use of a 2D NMR-based approach to express the global biochemical signature of autistic individuals compared to normal controls. This technique has greater spectral resolution than to 1D (1)H NMR spectroscopy, which is limited by overlapping signals. The urinary metabolic profiles of 30 autistic and 28 matched healthy children were obtained using a (1)H-(13)C NMR-based approach. The data acquired were processed by multivariate orthogonal partial least-squares discriminant analysis (OPLS-DA). Some discriminating metabolites were identified: β-alanine, glycine, taurine and succinate concentrations were significatively higher, and creatine and 3-methylhistidine concentrations were lower in autistic children than in controls. We also noted differences in several other metabolites that were unidentified but characterized by a cross peak correlation in (1)H-(13)C HSQC. Statistical models of (1)H and (1)H-(13)C analyses were compared and only 2D spectra allowed the characterization of statistically relevant changes [R(2)Y(cum)=0.78 and Q(2)(cum)=0.60] in the low abundance metabolites. This method has the potential to contribute to the diagnosis of neurodevelopment disorders but needs to be validated on larger cohorts and on other developmental disorders to define its specificity

    From crystalline to amorphous calcium pyrophosphates:a solid state Nuclear Magnetic Resonance perspective

    Get PDF
    Hydrated calcium pyrophosphates (CPP, Ca2P2O7·nH2O) are a fundamental family of materials among osteoarticular pathologic calcifications. In this contribution, a comprehensive multinuclear NMR (Nuclear Magnetic Resonance) study of four crystalline and two amorphous phases of this family is presented. 1H, 31P and 43Ca MAS (Magic Angle Spinning) NMR spectra were recorded, leading to informative fingerprints characterizing each compound. In particular, different 1H and 43Ca solid state NMR signatures were observed for the amorphous phases, depending on the synthetic procedure used. The NMR parameters of the crystalline phases were determined using the GIPAW (Gauge Including Projected Augmented Wave) DFT approach, based on first-principles calculations. In some cases, relaxed structures were found to improve the agreement between experimental and calculated values, demonstrating the importance of proton positions and pyrophosphate local geometry in this particular NMR crystallography approach. Such calculations serve as a basis for the future ab initio modeling of the amorphous CPP phases. Statement of significance The general concept of NMR crystallography is applied to the detailed study of calcium pyrophosphates (CPP), whether hydrated or not, and whether crystalline or amorphous. CPP are a fundamental family of materials among osteoarticular pathologic calcifications. Their prevalence increases with age, impacting on 17.5% of the population after the age of 80. They are frequently involved or associated with acute articular arthritis such as pseudogout. Current treatments are mainly directed at relieving the symptoms of joint inflammation but not at inhibiting CPP formation nor at dissolving these crystals. The combination of advanced NMR techniques, modeling and DFT based calculation of NMR parameters allows new original insights in the detailed structural description of this important class of biomaterials

    A Soluble Form of the Triggering Receptor Expressed on Myeloid Cells-1 Modulates the Inflammatory Response in Murine Sepsis

    Get PDF
    The triggering receptor expressed on myeloid cells (TREM)-1 is a recently discovered receptor expressed on the surface of neutrophils and a subset of monocytes. Engagement of TREM-1 has been reported to trigger the synthesis of proinflammatory cytokines in the presence of microbial products. Previously, we have identified a soluble form of TREM-1 (sTREM-1) and observed significant levels in serum samples from septic shock patients but not controls. Here, we investigated its putative role in the modulation of inflammation during sepsis. We observed that sTREM-1 was secreted by monocytes activated in vitro by LPS and in the serum of animals involved in an experimental model of septic shock. Both in vitro and in vivo, a synthetic peptide mimicking a short highly conserved domain of sTREM-1 appeared to attenuate cytokine production by human monocytes and protect septic animals from hyper-responsiveness and death. This peptide seemed to be efficient not only in preventing but also in down-modulating the deleterious effects of proinflammatory cytokines. These data suggest that in vivo modulation of TREM-1 by sTREM peptide might be a suitable therapeutic tool for the treatment of sepsis

    GC-MS-based urine metabolic profiling of autism spectrum disorders.: GC-MS-based Urine Metabolic Profiling in ASD

    Get PDF
    International audienceAutism spectrum disorders (ASD) are a group of neurodevelopmental disorders resulting from multiple factors. Diagnosis is based on behavioural and developmental signs detected before 3 years of age, and there is no reliable biological marker. The purpose of this study was to evaluate the value of gas chromatography combined with mass spectroscopy (GC-MS) associated with multivariate statistical modeling to capture the global biochemical signature of autistic individuals. GC-MS urinary metabolic profiles of 26 autistic and 24 healthy children were obtained by liq/liq extraction, and were or were not subjected to an oximation step, and then were subjected to a persilylation step. These metabolic profiles were then processed by multivariate analysis, in particular orthogonal partial least-squares discriminant analysis (OPLS-DA, R(2)Y(cum) = 0.97, Q(2)(cum) = 0.88). Discriminating metabolites were identified. The relative concentrations of the succinate and glycolate were higher for autistic than healthy children, whereas those of hippurate, 3-hydroxyphenylacetate, vanillylhydracrylate, 3-hydroxyhippurate, 4-hydroxyphenyl-2-hydroxyacetate, 1H-indole-3-acetate, phosphate, palmitate, stearate, and 3-methyladipate were lower. Eight other metabolites, which were not identified but characterized by a retention time plus a quantifier and its qualifier ion masses, were found to differ between the two groups. Comparison of statistical models leads to the conclusion that the combination of data obtained from both derivatization techniques leads to the model best discriminating between autistic and healthy groups of children

    Détermination de la répartition spatiale optimale des sources thermiques dans un plateau chauffant

    Get PDF
    International audienceDans ce travail, on s'intéresse à l'optimisation du chauffage d'un outillage (plateau chauffant) utilisé dans la mise en forme de matériaux composites à hautes températures (~400°C). L'objectif recherché est d'assurer la maîtrise du champ de température en tout point à la surface de l'outillage qui doit reproduire un champ consigne donné afin de chauffer un moule ayant une forme complexe. Pour ce faire, une procédure a été mise en place afin de déterminer la répartition spatiale optimale des sources thermiques de chauffage. La démarche proposée comporte deux étapes : (i) la définition d'une courbe paramétrée qui définit la répartition spatiale des sources de chauffage dans l'épaisseur du plateau chauffant et (ii) l'utilisation d'une méthode inverse couplant un algorithme d'optimisation stochastique avec un code de calcul par éléments finis. Cette deuxième étape permet d'ajuster cette courbe afin d'obtenir un champ de température simulé le plus proche possible de celui voulu à la surface du plateau. On étudie l'évolution de cet écart entre les champs de température ainsi que la consommation énergétique en fonction du nombre de sources retenu. Nomenclature (11 points, 2 colonnes) H Hauteur (m) Valeur maximale de (°C) L Largeur (m) Température normalisée entre [0,1] et Paramètres de la courbe à optimiser Courbe paramétrée Température consigne (°C) Ecart quadratique moyen (°C) Valeur minimale de (°C
    • …
    corecore