82 research outputs found

    The Hemophore HasA from Yersinia pestis (HasAyp) Coordinates Hemin with a Single Residue, Tyr75, and with Minimal Conformational Change

    Get PDF
    Hemophores from Serratia marcescens (HasAsm) and Pseudomonas aeruginosa (HasAp) bind hemin between two loops, which harbor the axial ligands H32 and Y75. Hemin binding to the Y75 loop triggers closing of the H32 loop and enables binding of H32. Because Yersinia pestis HasA (HasAyp) presents a Gln at position 32, we determined the structures of apo-and holo-HasAyp. Surprisingly, the Q32 loop in apo-HasAyp is already in the closed conformation but no residue from the Q32 loop binds hemin in holo-HasAyp. In agreement with the minimal reorganization between the apo-and holo-structures, the hemin on-rate is too fast to detect by conventional stopped-flow measurements

    Light-Induced Nā‚‚O Production from a Non-Heme Ironā€“Nitrosyl Dimer

    Get PDF
    Two non-heme ironā€“nitrosyl species, [Feā‚‚(N-Et-HPTB)(Oā‚‚CPh)(NO)ā‚‚](BF4)ā‚‚(1a) and [Feā‚‚(N-Et-HPTB)(DMF)ā‚‚(NO)(OH)](BFā‚„)ā‚ƒ (2a), are characterized by FTIR and resonance Raman spectroscopy. Binding of NO is reversible in both complexes, which are prone to NO photolysis under visible light illumination. Photoproduction of Nā‚‚O occurs in high yield for 1a but not 2a. Low-temperature FTIR photolysis experiments with 1a in acetonitrile do not reveal any intermediate species, but in THF at room temperature, a new {FeNO}ā· species quickly forms under illumination and exhibits a Ī½(NO) vibration indicative of nitroxyl-like character. This metastable species reacts further under illumination to produce Nā‚‚O. A reaction mechanism is proposed, and implications for NO reduction in flavodiiron proteins are discussed.National Institutes of Health (U.S.) (GM074785)National Institutes of Health (U.S.) (GM032134

    Kinetic and spectroscopic studies of hemin acquisition in the hemophore HasAp from Pseudomonas aeruginosa

    Get PDF
    The extreme limitation of free iron has driven various pathogens to acquire iron from the host in the form of heme. Specifically, several Gram negative pathogens secrete a heme binding protein known as HasA to scavenge heme from the extracellular environment and to transfer it to the receptor protein HasR for import into the bacterial cell. Structures of heme-bound and apo-HasA homologues show that the heme iron(III) ligands, His32 and Tyr75, reside on loops extending from the core of the protein and that a significant conformational change must occur at the His32 loop upon heme binding. Here, we investigate the kinetics of heme acquisition by HasA from Pseudomonas aeruginosa (HasAp). The rate of heme acquisition from human met-hemoglobin (met-Hb) closely matched that of heme dissociation which suggests a passive mode of heme uptake from this source. The binding of free hemin is characterized by an initial rapid phase forming an intermediate before further conversion to the final complex. Analysis of this same reaction using an H32A variant lacking the His heme ligand shows only the rapid phase to form a heme-protein complex spectroscopically equivalent to that of the wild type intermediate. Further characterization of these reactions using EPR and resonance Raman spectroscopy of rapid freeze quench samples provided support for a model where heme is initially bound by the Tyr75 to form a high-spin heme-protein complex before slower coordination of the His32 ligand upon closing of the His loop over the heme. The slow rate of this loop closure implies that the induced-fit mechanism of heme uptake in HasAp is not based on a rapid sampling of the H32 loop between open and closed configurations, but rather, that the H32 loop motions are triggered by the formation of the high-spin heme-HasAp intermediate complex

    Ion-binding properties of a K+ channel selectivity filter in different conformations

    Get PDF
    K(+) channels are membrane proteins that selectively conduct K(+) ions across lipid bilayers. Many voltage-gated K(+) (K(V)) channels contain two gates, one at the bundle crossing on the intracellular side of the membrane and another in the selectivity filter. The gate at the bundle crossing is responsible for channel opening in response to a voltage stimulus, whereas the gate at the selectivity filter is responsible for C-type inactivation. Together, these regions determine when the channel conducts ions. The K(+) channel from Streptomyces lividians (KcsA) undergoes an inactivation process that is functionally similar to K(V) channels, which has led to its use as a practical system to study inactivation. Crystal structures of KcsA channels with an open intracellular gate revealed a selectivity filter in a constricted conformation similar to the structure observed in closed KcsA containing only Na(+) or low [K(+)]. However, recent work using a semisynthetic channel that is unable to adopt a constricted filter but inactivates like WT channels challenges this idea. In this study, we measured the equilibrium ion-binding properties of channels with conductive, inactivated, and constricted filters using isothermal titration calorimetry (ITC). EPR spectroscopy was used to determine the state of the intracellular gate of the channel, which we found can depend on the presence or absence of a lipid bilayer. Overall, we discovered that K(+) ion binding to channels with an inactivated or conductive selectivity filter is different from K(+) ion binding to channels with a constricted filter, suggesting that the structures of these channels are different

    Phenol Nitration Induced by an {Fe(NO)\u3csub\u3e2\u3c/sub\u3e}\u3csup\u3e10\u3c/sup\u3e Dinitrosyl Iron Complex

    Get PDF
    Cellular dinitrosyl iron complexes (DNICs) have long been considered NO carriers. Although other physiological roles of DNICs have been postulated, their chemical functionality outside of NO transfer has not been demonstrated thus far. Here we report the unprecedented dioxygen reactivity of a N-bound {Fe(NO)2}10 DNIC, [Fe(TMEDA)(NO)2] (1). In the presence of O2, 1 becomes a nitrating agent that converts 2,4,-di-tert-butylphenol to 2,4-di-tert-butyl-6-nitrophenol via formation of a putative iron-peroxynitrite [Fe(TMEDA)(NO)(ONOO)] (2) that is stable below āˆ’80 Ā°C. Iron K-edge X-ray absorption spectroscopy on 2 supports a five-coordinated metal center with a bound peroxynitrite in a cyclic bidentate fashion. The peroxynitrite ligand of 2 readily decays at increased temperature or under illumination. These results suggest that DNICs could have multiple physiological or deleterious roles, including that of cellular nitrating agents

    Insight into the Spatial Arrangement of the Lysine Tyrosylquinone and Cu2+ in the Active Site of Lysyl Oxidase-like 2

    Get PDF
    Lysyl oxidase-2 (LOXL2) is a Cu2+ and lysine tyrosylquinone (LTQ)-dependent amine oxidase that catalyzes the oxidative deamination of peptidyl lysine and hydroxylysine residues to promote crosslinking of extracellular matrix proteins. LTQ is post-translationally derived from Lys653 and Tyr689, but its biogenesis mechanism remains still elusive. A 2.4 ƅ Zn2+-bound precursor structure lacking LTQ (PDB:5ZE3) has become available, where Lys653 and Tyr689 are 16.6 ƅ apart, thus a substantial conformational rearrangement is expected to take place for LTQ biogenesis. However, we have recently shown that the overall structures of the precursor (no LTQ) and the mature (LTQ-containing) LOXL2s are very similar and disulfide bonds are conserved. In this study, we aim to gain insights into the spatial arrangement of LTQ and the active site Cu2+ in the mature LOXL2 using a recombinant LOXL2 that is inhibited by 2-hydrazinopyridine (2HP). Comparative UV-vis and resonance Raman spectroscopic studies of the 2HP-inhibited LOXL2 and the corresponding model compounds and an EPR study of the latter support that 2HP-modified LTQ serves as a tridentate ligand to the active site Cu2. We propose that LTQ resides within 2.9 ƅ of the active site of Cu2+ in the mature LOXL2, and both LTQ and Cu2+ are solvent-exposed

    Structural, NMR Spectroscopic and Computational Investigation of Hemin Loading in the Hemophore HasAp from Pseudomonas aeruginosa

    Get PDF
    Heat shock protein 90 (Hsp90) inhibition by modulation of the N-or C-terminal binding site has become an attractive strategy for the development of anti-cancer chemotherapeutics. The first Hsp90 C-terminus inhibitor, novobiocin, manifested a relatively high IC50 value of ~700 Ī¼M. Therefore, investigation of the novobiocin scaffold has led to analogs with improved antiproliferative activity (nanomolar concentrations) against several cancer cell lines. During these studies, novobiocin analogs that do not inhibit Hsp90 were identified; however, these analogs demonstrated potent anti-proliferative activity. Compound 2, a novobiocin analog, was identified as a MAPK pathway signaling disruptor that lacked Hsp90 inhibitory activity. In addition, structural modifications of compound 2 were identified that segregated Hsp90 inhibition from MAPK signaling disruption. These studies indicate that compound 2 represents a novel scaffold for disruption of MAPK pathway signaling and may serve as a useful structure for the generation of new anti-cancer agents

    Replacing Arginine 33 for Alanine in the Hemophore HasA from Pseudomonas aeruginosa Causes Closure of the H32 Loop in the Apo-Protein

    Get PDF
    Previous characterization of hemophores from Serratia marcescens (HasAs), Pseudomonas aeruginosa (HasAp) and Yersinia pestis (HasAyp) showed that hemin binds between two loops, where it is axially coordinated by H32 and Y75. The Y75 loop is structurally conserved in all three hemophores and harbors conserved ligand Y75. The other loop contains H32 in HasAs and HasAp, but a noncoordinating Q32 in HasAyp. The H32 loop in apo-HasAs and apo-HasAp is in an open conformation, which places H32 about 30 ƅ from the hemin-binding site. Hence, hemin binding onto the Y75 loop of HasAs or HasAp triggers a large relocation of the H32 loop from an open- to a closed-loop conformation and enables coordination of the hemin-iron by H32. In comparison, the Q32 loop in apo-HasAyp is in the closed conformation and hemin binding occurs with minimal reorganization and without coordinative interactions with the Q32 loop. Studies in crystallo and in solution have established that the open H32 loop in apo-HasAp and apo-HasAs is well structured and minimally affected by conformational dynamics. In this study we address the intriguing issue of the stability of the H32 loop in apo-HasAp and how hemin binding triggers its relocation. We address this question with a combination of NMR spectroscopy, X-ray crystallography, and molecular dynamics simulations and find that R33 is critical to the stability of the open H32 loop. Replacing R33 with A causes the H32 loop in R33A apo-HasAp to adopt a conformation similar to that of holo-HasAp. Finally, stopped-flow absorption and resonance Raman analyses of hemin binding to apo-R33A HasAp indicates that the closed H32 loop slows down the insertion of the heme inside the binding pocket, presumably as it obstructs access to the hydrophobic platform on the Y75 loop, but accelerate the completion of the heme iron coordination
    • ā€¦
    corecore