4,306 research outputs found

    Ecosystem service framework and typology for an ecosystem approach to aquaculture

    Get PDF
    International audienceThe ecosystem approach to aquaculture (EAA) considers ecosystem services (ES) important but does not provide a conceptual framework or a typology to integrate and assess them. To supplement the EAA, a literature review of the ES conceptual framework and ES typologies was combined with selected criteria from the EAA and ES literature. Eight criteria of transition from a conventional approach to aquaculture to the EAA were used as selection criteria to choose a conceptual framework of ES relevant with the EAA. To select a typology, we determined that ES must be distinguished from benefits, be a part of nature, be usable directly and indirectly, and not contain support or habitat ES. The conceptual framework of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) is the most compatible with the EAA but does not provide an ES typology. The Common International Classification of Ecosystem Services (CICES) provides the ES typology most consistent with EAA criteria to supplement the conceptual framework. We identified 10 provisioning ES, 20 regulation and maintenance ES, and 11 cultural ES. Integration of the IPBES conceptual framework with the CICES typology preserves the generic approach of the EAA. This integration could highlight the main interactions among an aquaecosystem, its ES supply, its management, and its relevant stakeholders at multiple spatial and temporal scales. Moreover, it fulfils the three main goals of the EAA by identifying them in a clear and common framework

    Multilevel analysis of childhood nonviral gastroenteritis associated with environmental risk factors in Quebec, 1999–2006

    Get PDF
    Childhood nonviral gastroenteritis is a priority for various public health authorities. Given that waterborne transmission is sometimes incriminated during investigation of gastroenteritis outbreaks, the authors hypothesized that watershed characteristics may influence the occurrence of this disease and could contribute additional insights for better prevention and control. The study described here aimed to investigate watershed characteristics in relation to nonviral gastroenteritis and specifically three bacterial and parasitic forms of childhood gastroenteritis to assess their relative importance in the province of Quebec, Canada. Information on children aged 0–4 years with bacterial or parasitic enteric infections reported through ongoing surveillance between 1999 and 2006 in the province of Quebec was collected. Factors measured at the municipal and watershed levels were analyzed using multilevel models with a Poisson distribution and log link function. Childhood nonviral gastroenteritis, giardiasis, and campylobacteriosis were positively associated with small ruminants and cattle density. Childhood salmonellosis was positively associated with cattle density. Also, childhood campylobacteriosis incidence was positively associated with larger watershed agricultural surface. In addition to local agroenvironmental factors, this analysis revealed an important watershed effect

    Prediction of Auto-Ignition Temperatures and Delays for Gas Turbine Applications

    Get PDF
    International audienceGas turbines burn a large variety of gaseous fuels under elevated pressure and temperature conditions. During transient operations like maintenance, start-ups or fuel transfers, variable gas/air mixtures are involved in the gas piping system. Therefore, in order to predict the risk of auto-ignition events and ensure a safe and optimal operation of gas turbines, it is of the essence to know the lowest temperature at which spontaneous ignition of fuels may happen. Experimental auto-ignition data of hydrocarbon-air mixtures at elevated pressures are scarce and often not applicable in specific industrial conditions. AIT data correspond to temperature ranges in which fuels display an incipient reactivity, with time scales amounting in seconds or even in minutes instead of milliseconds in flames. In these conditions, the critical reactions are most often different from the ones governing the reactivity in a flame or in high temperature ignition. Some of the critical paths for AIT, especially those involving peroxy radicals, are similar to those encountered in slow oxidation. Therefore, the main available kinetic models that have been developed for fast combustion, are unfortunately unable to represent properly these low temperature processes.In this context, a numerical approach addressing the influence of process conditions on the minimum auto-ignition temperature of different fuel/air mixtures has been developed. For that purpose, several chemical models available in the literature have been tested, in order to identify the most robust ones. Based on previous works of our group, a model covering a large temperature range has been developed, which offers a fair reconciliation between experimental and calculated AIT data through a wide range of fuel compositions. This model has been validated against experimental auto-ignition delay times (AID) corresponding to high temperature in order to ensure its relevance not only for AIT aspects but also for the reactivity of gaseous fuels over the wide range of gas turbine operation conditions. In addition, the AITs of methane, of pure light alkanes and of various blends representative of several natural gas and process-derived fuels were extensively covered. In particular, among alternative gas turbine fuels, hydrogen-rich gases are called to play an increasing part in the future so that their ignition characteristics have been addressed with particular care. Natural gas enriched with hydrogen, and different CO/H2 syngas fuels originating from a blast furnace (BFG) have namely been studied. Globally, the individual species covered are: H2, CO, CO2, N2, CH4, C2H6, C3H8, C4H10, and C5H12. AIT values have been evaluated in function of the equivalence ratio and pressure. All the results obtained have been fitted by means of a practical mathematical expression. The overall study leads to a simple correlation of AIT versus equivalence ratio/pressure that may be of fruitful use for the engineering community

    Prediction of auto-ignition temperatures and delays for gas turbine applications

    No full text
    International audienceGas turbines burn a large variety of gaseous fuels under elevated pressure and temperature conditions. During transient operations, variable gas/air mixtures are involved in the gas piping system. In order to predict the risk of auto-ignition events and ensure a safe operation of gas turbines, it is of the essence to know the lowest temperature at which spontaneous ignition of fuels may happen. Experimental auto-ignition data of hydrocarbon–air mixtures at elevated pressures are scarce and often not applicable in specific industrial conditions. Auto-ignition temperature (AIT) data correspond to temperature ranges in which fuels display an incipient reactivity, with timescales amounting in seconds or even in minutes instead of milliseconds in flames. In these conditions, the critical reactions are most often different from the ones governing the reactivity in a flame or in high temperature ignition. Some of the critical paths for AIT are similar to those encountered in slow oxidation. Therefore, the main available kinetic models that have been developed for fast combustion are unfortunately unable to represent properly these low temperature processes. A numerical approach addressing the influence of process conditions on the minimum AIT of different fuel/air mixtures has been developed. Several chemical models available in the literature have been tested, in order to identify the most robust ones. Based on previous works of our group, a model has been developed, which offers a fair reconciliation between experimental and calculated AIT data through a wide range of fuel compositions. This model has been validated against experimental auto-ignition delay times corresponding to high temperature in order to ensure its relevance not only for AIT aspects but also for the reactivity of gaseous fuels over the wide range of gas turbine operation conditions. In addition, the AITs of methane, of pure light alkanes, and of various blends representative of several natural gas and process-derived fuels were extensively covered. In particular, among alternative gas turbine fuels, hydrogen-rich gases are called to play an increasing part in the future so that their ignition characteristics have been addressed with particular care. Natural gas enriched with hydrogen, and different syngas fuels have been studied. AIT values have been evaluated in function of the equivalence ratio and pressure. All the results obtained have been fitted by means of a practical mathematical expression. The overall study leads to a simple correlation of AIT versus equivalence ratio/pressure

    A review on high temperature thermochemical heat energy storage

    Get PDF
    Solar thermal energy represents an increasingly attractive renewable source.However,to provide continuous availability of this energy,it must be stored. This paper presents the state of the art on high temperature(573-1273K)solar thermal energy storage based on chemical reactions,which seems to be the most advantageous one for long-term storage. The paper summarizes the numerical,experimental and technological studies done so far. Each system is described and the advantages and drawbacks of each reaction couple are considered

    P.I. Control of Nonlinear Oscillations for a System with Delay

    Get PDF
    Projet SOSSO, Projet META2We study the periodic oscillations of a 1st order delayed linear system with relay output and proportional++integral feedback and describe the behavior of the general solutions of the closed loop. We present results on control of the oscillations and on rejection of the perturbations. For the system under study, we first exhibit a countable set of periodic limit cycles. We show that in the particular case where only proportional control is used, any solution tends in finite time towards one of the limit cycles (whose determination depends on the initial conditions). All the cycles are orbitally unstable except one of them, the only slowly oscillating one. Finally, we provide some well-posedness and ultimate boundedness results for a time-varying perturbed version of the system under study. The given estimates show that the proportional++integral feedback law permits to reject various parametric perturbations
    • …
    corecore