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a b s t r a c t

Solar thermal energy represents an increasingly attractive renewable source. However, to provide continuous

availability of this energy, it must be stored. This paper presents the state of the art on high temperature (573–

1273 K) solar thermal energy storage based on chemical reactions, which seems to be the most advantageous

one for long-term storage. The paper summarizes the numerical, experimental and technological studies done

so far. Each system is described and the advantages and drawbacks of each reaction couple are considered.
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1. Introduction

The use of renewable energy is essential today to decrease

the consumption of fossil resources and to decrease the pro-

duction of carbon dioxide partly responsible for the greenhouse

effect [1]. Solar energy constitutes an attractive source of

energy because it is both free and endless. It can be converted

into electricity by means of a concentrated solar plant (CSP)

composed of four elements: a concentrator, a receiver, a trans-

port media system and a power conversion machine. However,

the major drawback of this energy is its intermittence. One

solution is to develop thermal energy storage (TES) systems,

which will store heat during the sunshine periods and release it

during the periods of weak or no solar irradiation. A CSP

equipped with a TES system would continuously supply elec-

tricity. Thus, the development of an efficient and cost-effective

TES system is crucial for the future of this technology.

At the moment, three kinds of TES systems are known: the

sensible heat storage, the latent heat storage and the thermo-

chemical heat storage [1,2]. Sensible heat storage systems are the

most mature technologies. They have been and are still being used

in industrial plants, most notably in Spain, with the PS10 and PS20

projects (2007 and 2009) or the Andasol 1 and 2 plants (2008), but

also in the USA, e.g. with Solar One (1982) [2]. Among the other

techniques, thermochemical heat storage seems to be a valid

option to be used as a TES system [3,4]. However, in order to be

efficient and cost-effective, the appropriate reversible chemical

reactions have to be identified [5]. Recently, two reviews focusing

on low temperature (273–573 K) TES systems based on chemical

reactions have been published. They respectively concern long-

term sorption solar energy storage [6] and chemical heat pump

technologies and their applications [7]. Cot-Gores et al. [8] also

published a state-of-the-art on sorption and chemical reaction

processes for TES application and some of the high temperature

reactions are listed in the Felderhoff et al. article [9].

The purpose of this work is to provide a state-of-the-art of

the thermochemical heat storage solutions, focusing on tem-

peratures comprised between 573 K and 1273 K. General defini-

tions as well as the disciplines involved in the development of a

TES system are detailed. The experimental facilities at pilot or

laboratory scales and their applications are reviewed and

described. The systems have been classified according to their

reaction family (carbonation, hydration, oxidation…) since they

often share the same advantages and drawbacks. The main data

have been compiled in 2 graphs (densities versus temperature)

and a general table which summarizes the literature data about

reversible reactions studied for thermochemical storage appli-

cations is given.

2. Thermal energy storage: definitions

Thermal storage systems have to be used to correct the existing

mismatch between the discontinuous solar energy supply and the

continuous electricity consumption [1]. They involve at least three

steps: heat charging, storage and discharging. Three mechanisms

of storing thermal energy exist. They are described below.

In sensible heat storage systems, during the charging step, solar

energy is used to heat a fluid or a solid medium, thus, increasing

its energy content. Then, the medium is stored at the charging

step temperature. When this energy is released (discharging step),

the medium temperature decreases. The sensible heat stored

is associated with this increase or decrease of temperature.

The thermal energy stored by sensible heat can be expressed as

Q ¼mCpΔT

Where m is the mass of the material (kg), Cp is the specific heat

over the temperature range operation (kJ kg"1 K"1) and ΔT is the

temperature difference (K). Two reviews list the materials and the

works done for high temperature thermal energy storage based on

sensible heat [1,2].

In latent heat storage, during the charging step, solar energy

can be used as the heat source that initiates a phase change. Then,

the medium is stored at the charging step temperature into its

new phase. When this energy is released (discharging step), the

medium phase changes into the first state. The latent heat stored is

associated with this phase change. The thermal energy stored in

phase change material can be expressed as:

Q ¼mL

Where m is the mass of the material (kg) and L is the latent heat of

the material (kJ kg"1).Many publications deal with latent TES

systems. For instance, a review lists the materials, the heat transfer

analysis and the applications [10]; another one lists both the

materials and the works done for high temperature thermal

energy storage based on phase change material (PCM) [11].

The reactions involved in the thermochemical heat storage

system are reversible ones:

AþΔHr3BþC

Heat is stored during the endothermic reaction step and

released during the exothermic one. The thermochemical heat

stored is linked to the reaction enthalpy. During the charging step,

thermal energy is used to dissociate a chemical reactant (A), into

products (B) and (C). This reaction is endothermic. During the

releasing step, the products of the endothermic reaction (B and C)

are mixed together and react to form the initial reactant (A). This

reaction is exothermic and releases heat. The products of both

Nomenclature

A product A [dimensionless]

B Product B [dimensionless]

C product C [dimensionless]

Cp specific heat of the media, kWh kg"1 K"1

or kJ kg"1 K"1

Dm gravimetric energy density, kWh kg"1

Dv volumetric energy density, kWh m"3

K thermodynamic equilibrium constant [dimensionless]

L latent enthalpy, kWh kg"1

M mass of media, kg

nA mol number of product A, mol

Pu useful power, kW

Q thermal energy stored, kWh

T temperature of the system, K

Tn turning temperature, K

V volume of media, m"3

ΔHr reaction enthalpy, kWh mol"1 or kJ mol"1

Δt time difference, s

ΔT temperature difference, K

ΔSr reaction entropy kJ K"1

η thermal efficiency [dimensionless]

þ advantages level of importance (þþþhigh,

þþmedium, þ low) [dimensionless]

" drawbacks level of importance (""" high, ""

medium, " low) [dimensionless]



reactions can be stored either at ambient temperature or at

working temperature. The thermal energy stored in thermoche-

mical material can be expressed as:

Q ¼ nAΔHr

Where nA is the mol number of the reactant A (mol) and ΔHr is the

reaction enthalpy (kWh molA
"1). The simplified scheme of a TES

system based on chemical reactions is presented on Fig. 1.

2.1. Energy density

In this paper, the energy density is assessed from the endother-

mic reactant (A) mass or volume. The energy density can be

defined in two ways. The first one and also the most used is the

volumetric energy density, expressed as:

Dv ¼ Q=V

Where Dv is the volumetric energy density (kWh m"3), Q is

the stored thermal energy (kWh) and V is the storage material

volume (m3).

In case of G/S reactions, if the A product is a gas, the

temperature and pressure conditions have to be specified. If the

A product is a solid, it is important to know which property among

the true density, the apparent density or the bulk density is being

used. True density is defined as the material density without

porosity. Apparent density is defined as the average density of the

material and includes the volume of pores within the particle

boundary. Bulk density is defined as the density of the packed bed

of particles. Once this property is known, the volume can be

assessed. To be rigorous, the volumetric energy density should be

calculated with the biggest volume or the installation volume.

The second definition is that of gravimetric energy density,

expressed as

Dm ¼Q=m

Where Dm is the mass energy density (kWh kg"1), Q is the stored

thermal energy (kWh) and m is the storage material mass (kg).

Both energy densities are important in order to estimate the

size and the cost of the TES system.

Table 1

Characteristics and comparison of the thermal energy storage systems [1].

Sensible heat storage system Latent heat storage system Thermochemical storage system

Energy density

Volumetric density Small $50 kWh m"3 of material Medium $100 kWh m"3 of material High$500 kWh m"3 of reactant

Gravimetric density Small$0.02–0.03 kWh kg"1 of material Medium $0.05–0.1 kWh kg"1 of material High $0.5–1 kWh kg"1 of reactant

Storage temperature Charging step temperature Charging step temperature Ambient temperature

Storage period Limited (thermal losses) Limited (thermal losses) Theoretically unlimited

Transport Small distance Small distance Distance theoretically unlimited [12]

Maturity Industrial scale Pilot scale Laboratory scale

Technology Simple Medium Complex

Fig. 1. Simplified scheme of a TES system based on chemical reactions.

Thermochemical 

TES system

Fig. 2. Technical disciplines necessary to the development of a TES system based on chemical reactions [4].



2.2. Comparison of different TES systems

To compare the three different TES systems, six parameters

are considered: the energy density, the storage temperature,

the storage period, the material transportation possibility, the

maturity of the TES system and the complexity of associated

technologies.

The characteristic data of each storage system are given in

Table 1.

Thermochemical storage systems have several advantages.

Their energy densities are 5 to 10 times higher than latent

heat storage system and sensible heat storage system respec-

tively. Both storage period and transport are theoretically un-

limited because there is no thermal loss during storage, as

products can be stored at ambient temperature. Thus, these

systems are promising to store solar thermal energy during a

long-term period. Nevertheless, unlike sensible and latent heat

storage systems there is only little experience feedback on

thermochemical storage.

3. State-of-the-art on solar thermal energy storage based on

chemical reactions

3.1. Technical disciplines and skills for developing a thermochemical

TES system

Thermochemical TES systems are still at a very early stage of

development. Most of the studies are done at laboratory scale.

Considerable amount of time, money and efforts are required

before a commercially viable system becomes operational. The

technical disciplines identified by Garg et al. [4] to develop a

thermochemical TES system are updated and presented on Fig. 2.

Usually, the first step to develop a thermochemical TES system

is the selection of the reaction and the study of its chemical

characteristics such as the reversibility, the rate of reaction, the

operating conditions (P and T) and the kinetic properties. Went-

worth and Chen [5] reported that the following criteria ought to be

respected for choosing the most suitable chemical reaction in the

thermochemical TES system:

% The endothermic reaction used for heat storage should occur at

a temperature lower than 1273 K.
% The exothermic reaction used to recover heat should occur at a

temperature higher than 773 K.

% Large enthalpies of reaction and a product of small molar

volume are required to maximize the storage capacity

($500 kWh m"3).
% Both reactions should be completely reversible, with no side

reactions, and have high yields in order to use the materials

over a long period of time.
% Both reactions should be fast enough so that the absorption of

solar energy and heat release can be carried out rapidly.
% The chemical compounds of both reactions should be easily

handleable.
% When stored, the chemical compounds should not react with

their environment.
% Experiment feedback on the reaction is required to use a well-

known chemical process.
% Low costs should be required.

Some papers list reversible reactions which can be used for a

TES system [3–5,13]. Usually, their characteristics are reactant

family, reaction enthalpy and turning temperature. For a reversible

reaction of the type aA3bBþcC and a given pressure, the turning

temperature Tn is defined as the temperature at which the reaction

rate constant K is equal to 1, and is approximated as Tn¼ΔHr/ΔSr.

As Ko1 when T4Tn and K41 for ToTn [4,5]. The turning

temperature Tn may help knowing the required temperature

conditions to carry out both endothermic and exothermic reac-

tions [4,5]. The study of chemistry properties allows the determi-

nation of the required operating conditions. Then, the chemical

engineering work can start with the choice of the reactor technol-

ogy, the material, the operating process plant design and the

system analysis.

The following state-of-the-art underlines the different reactions

which were or are studied for a thermochemical TES plant. These

reactions are classified in six systems which are illustrated in Fig. 3.

3.2. Hydrogen systems: metallic hydrides

The general form of a reaction using a metal M, is

MHnþΔHr3Mþn=2H2

Usually, the reversible metallic hydride reactions are used to store

hydrogen. In fact, one of the first research works were performed in

the automotive industry for the hydrogen motor [14]. They led to

the design of reactor before being used for heat pumps [15] and,

in the beginning of the 90s, for the thermal energy storage [14].

Fig. 3



Three metallic hydrides have been studied for the thermal energy

storage in concentrated solar plants: lithium hydride (LiH) for the TES

using its energy of phase change, calcium hydride (CaH2) for heat

storage at high temperature between 1223 and 1373 K and magne-

sium hydride (MgH2) for both applications [16].

We only focus on the reaction involving magnesium hydride

studied for a thermochemical TES application [17]. The reaction is

written as

MgH2ðsÞþΔHr3MgðsÞþH2ðgÞ with ΔHr ¼ 75 kJ mol"1
:

The working temperatures range between 523 and 773 K with

a hydrogen partial pressure between 1 and 100 bar. The knowl-

edge of the H2 dissociation (equilibrium) pressure as a function of

temperature is of fundamental importance for the use of MgH2/Mg

couple as storage system (Fig. 4).

In the beginning of the 90s, the first research works start with the

magnesium hydride [17] because of its high capacity of hydrogen

storage (7.7 wt%) [16]. Nevertheless, using magnesium hydride

involves major problems like slow kinetics and transfer limitations

for large quantities of products. A paper reviews the works done for

TES application [18]. In order to improve the rate of chemical

reactions, the Mg powder was doped with a commercial Ni powder

(4–10 wt%) and a Fe-powder (50 mol%). More than 1000 cycles were

achieved with the Mg–Ni mixed powder, but a sintering phenomenon

occurred. With the Mg2FeH6 powder, this phenomenon did not occur.

600 cycles were achieved without any drop in hydrogen capacity and

the working pressure was lower than the working pressure for the

pure material.

The Max-Planck institute designed and built three prototypes [18]:

a steam generator (Fig. 5), a thermochemical solar plant (Fig. 6) and a

solar cooking and cooling device.

The steam generator involves a MgH2/Mg heat storage. The volume

of the pressure vessel, closed to 20 L, is filled with a magnesium

powder doped with a Ni powder (14.5 kg). A H2 permeable tube set in

the centre of the pressure vessel allows the hydrogen supply and the

hydrogen recovery. Pressurized water flowing in a helical tube is set

into the metallic hydride for the heat recovery and the vapour

generation. The endothermic reaction can be implemented with a

ribbon heater sealed around the pressure vessel. The hydrogen

produced during the endothermic reaction is stored in six commercial

vessels. The operating conditions are at a maximal pressure of 50 bar, a

maximal temperature of 723 K and a maximal power of 4 kW.

The thermochemical solar plant is composed of a solar radiation

concentrator, a cavity radiation receiver, a Stirling engine, a hydrogen

tank pressure, a heat exchanger and a MgH2/Mg storage device. The

operating temperatures range between 623 K and 723 K. During the

sunshine periods, electricity is produced and heat is stored by

dissociating MgH2. During the periods of weak or no solar irradiation,

the hydrogen stored is supplied to the reactor to produce heat. Then,

the heat is converted into electricity by the Stirling engine.

Table 2 presents the advantages and the drawbacks of the

MgH2/Mg system as a thermochemical TES system.

3.3. Carbonate systems

The general reaction form is

MCO3ðsÞþΔHr3MOðsÞþCO2ðgÞ

Usually, these reactions occur at high temperature (T4723 K).

The calcination/carbonation reactions are driven by the CO2 partial

pressure and the temperature of the system. Two reversible

reactions, the calcite and the cerrusite calcination/carbonation,

were studied for a TES application. Today, most studies focus on

the CO2 sequestration with calcium carbonate [19].

3.3.1. Calcite calcination/carbonation

The reaction is

CaCO3ðsÞþΔHr3CaOðsÞþCO2ðgÞ with ΔHr ¼ 178 kJ mol"1
:

The reversibility of the reaction can be used for a TES system

application, for CO2 sequestration or for limestone production.

The working temperatures range between 973 and 1273 K with

CO2 partial pressure between 0 and 10 bar.

Fig. 5. Steam generator process based on MgH2 [13].

Fig. 4. Dissociation pressure curve of MgH2 [13].



In the mid 70s, Barker [20] suggests to use this reaction for

energy storage. His work focuses on the reversibility of the

reaction. Many problems are observed with a 10 mm particle size

powder due to the loss of specific surface. Indeed, a passivation

layer is created during the carbonation and leads to a reaction

limitation by decrease of the CO2 diffusion in the particles. In order

to solve this limitation, submicron particles have been used to

avoid diffusion problems and finally to improve the reaction

reversibility. While the material conversion reaches 93%, another

problem arises. The volumetric energetic density of the product

does not exceed 10% of the theoretical value of 35.3 kWh m"3 [21].

This huge decrease comes from the diminution of the density of

the product in bulk.

At the beginning of the 80s, the calcination reaction is operated

in two technologies of reactor: a fluidized bed in a batch mode

(Fig. 7) and a continuous rotary kiln (Fig. 8) [22]. The fluidized bed

works at a temperature between 873 and 1573 K with a solar

furnace useful power of 1,4 kW.

A total conversion of CaCO3 is reached. The thermal efficiency,

defined as the ratio between the sum of the sensible energy and

the reaction energy over the useful power given to the material

during Δt, is between 20 and 40%. It is expressed as

η¼ ðmCpΔTþnΔHrÞ=ðΔtPuÞ

Where η is the thermal efficiency ([-]), m is the initial mass of the

reactant A (kg), Cp is the specific heat over the temperature range

operation (kJ kg"1 K"1), ΔT is the temperature difference (K), n is

the mol number of reactant A (mol), ΔHr is the reaction enthalpy

(kJ mol"1), Δt is the time difference (s) and Pu is the useful

power (kW).

The rotary kiln (see Fig. 8) works at a temperature between 873

and 1573 K with a solar furnace useful power of 1.4 kW and is

inclined 51 to the horizontal. A maximal conversion of 60% of

CaCO3 is experimentally reached with thermal efficiencies ranging

from 10% to 30% [22,23]. Here, the residence times reached in the

reactor are included between 20 and 120 s for rotary speed from

4 to 25 tr min"1.

In order to improve the energetic efficiency of the reactors,

Flamant [22] identifies the main causes of thermal losses and

suggests some technological improvements on both the fluidization

distributor and the cooling system of the rotary kiln. According to

these proposals, Foro [25] develops an annular continuous fluidized

reactor with an electrical power of 3 kW and 1 kW of useful power.

He also demonstrates the thermal decomposition feasibility in the

fluidized bed.

After many years without surveys, Kyaw et al. [26] realise

a thermogravimetric study and suggest some new concepts for

the storage system [13]. A conceptual flow diagram of CaO–CO2

Fig. 6. Thermochemical solar plant [13].

Table 2

Advantages and drawbacks of the MgH2/Mg system.

Reaction Advantages Drawbacks

MgH2þ∆Hr3MgþH2 % Reversibility of the reaction (600 cycles)

% No by-product

% Product separation (Gas-solid)

% Experiment feedback

% H2 storage

% Slow reaction kinetics

% Need of Fe- or Ni-doping

% Sintering

% Operating pressure (50–100 bar)

% Heat transfer (solid/wall)



energy storing system is evaluated [26]. Three ways are used to

store CO2:

% a compressor and a tank;
% a carbonation reaction with MgO; and
% an adsorption reaction with zeolite.

The CaO–CO2–MgO system was the best system to convert heat

energy at 773 K to temperatures around 1273 K. The CaO–CO2

compressor system was the most suitable for storing and deliver-

ing thermal energy at the same temperature. The efficiency of

CaO–CO2-zeolite systems was strongly governed by the adsorption

power of the zeolite.

Aihara et al. [27] improved the reversibility of the reaction by

doping the material with titanium oxide (CaTiO3). A thermogravi-

metric study was done and showed a stabilisation of the reversi-

bility and no sintering. 10 cycles have been reached without loss of

reversibility and with a global conversion rate of 65%. The operat-

ing conditions for the carbonation and the calcination were

respectively 1023 K in nitrogen atmosphere and 1023 K with a

gas mixture of N2–CO2 containing 20% of CO2.

Meier et al. [24] developed a new solar reactor based on the

technology of the rotary kiln (Fig. 8). The objective was to produce

calcium oxide from limestone with an available power of 10 kW.

The experiments have been done with 1 to 5 mm particles size and

a conversion rate of 90–98% has been reached with a thermal

efficiency of 20%.

Table 3 presents the advantages and the drawbacks of the CaO/

CaCO3 system as the thermochemical TES system.

3.3.2. Cerrusite calcination/carbonation

The reaction scheme is

PbCO3ðsÞþΔHr3PbOðsÞþCO2ðgÞ with ΔHr ¼ 88 kJ mol"1
:

This reaction was studied for chemical heat pump applications

[28–30] in order to be combined with the CaCO3/CaO system. The

authors give operating temperatures from 573 to 1730 K with

partial pressure of CO2 included between 0 and 1 bar. A thermo-

gravimetric analysis of the PbCO3/PbO/CO2 system was done

to study the equilibrium relationship, the reaction reversibility

(7 cycles of carbonation without loss of reactivity were achieved)

and the kinetics of the reaction system [29]. The following

mechanism of the decomposition reaction has been proposed:

Step A: 2PbCO3¼Pb ( PbCO3þCO2

Step B: 3(PbO (PbCO3)¼2(2PbO ( PbCO3)þCO2

Step C: 2PbO (PbCO3¼3PbOþCO2

A packed bed reactor which combined PbO and CaO was built

to study the thermal storage performance of the chemical heat

pump [30]. The authors showed that the heat released by

carbonation of CaO was measured experimentally up to 1143 K

under a reaction pressure up to 1 atm.

Table 4 presents the advantages and the drawbacks of the PbO/

PbCO3 system as thermochemical TES system.

3.4. Hydroxide systems

The general reaction scheme is

M OHð Þ2ðsÞþΔHr3MOðsÞþH2OðgÞ

These reactions occur at medium temperature, usually

523oTo723 K. The H2O partial pressure and the temperature

drive the hydration/dehydration reactions. Fig. 9 shows some of

couples which could be used for a thermochemical TES application.

Two reversible reactions were studied for a TES application [3,4].

These reactions are MgO/Mg(OH)2 and CaO/Ca(OH)2 hydration/

dehydration.

3.4.1. Hydration/dehydration of magnesium oxide

The reaction is

MgðOHÞ2ðsÞþΔHr3MgOðsÞþH2OðgÞ with ΔHr ¼ 81 kJ mol"1
:

The preliminary studies showed that the reaction rate (forward

and backward reactions) is sufficient to be used for a TES applica-

tion [3,4]. This reaction couple is proposed for chemical heat pump

application to store and convert heat at temperatures of 370–

440 K [32].

Ervin [3] made a cycling study over 500 cycles. He observed a

conversion decrease from 95% to 60% within the fortieth cycle. It

then stabilized for the next 460 cycles.

Table 3

Advantages and drawbacks of the CaO/CaCO3 system.

Reaction Advantages Drawbacks

CaCO3þ∆Hr3CaOþCO2 % No catalyst

% Industrial technology known for the limestone production

% Material energy density (Theoretical: 692 KWh m"3)

% No by-product

% Easy product separation (gas-solid)

% Availability and price of the product

% Agglomeration and sintering

% Poor reactivity

% Change of volume (105%)

% CO2 storage

% Doping with Ti

Table 4

Advantages and drawbacks of the PbO/PbCO3 system.

Reaction Advantages Drawbacks

PbCO3þ∆Hr3PbOþCO2 % No catalyst

% Material energy density (Theoretical: 300 KWh m"3)

% No by-product

% Product separation (gas-solid)

% Poor reversibility

% Few experiment feedback

% CO2 storage

% Toxicity of the products



The following studies have been done in a Japanese laboratory

of the institute of Tokyo, the nuclear reactors laboratory. These

researches aimed at developing chemical heat pumps. The first

kinetic study of the hydration reaction was led by Kato et al. [33]

for 10 μm particles. A 4 steps mechanism between MgO(s) and

H2O(g) has been proposed: (i) containment of water as fixed

structural, (ii) physical adsorption of water, (iii) chemical reaction

with water producing Mg(OH)2(s) and (iv) inert portion of water.

The kinetic parameters have been assessed and the model shows a

good accuracy with the experimental results.

Kato et al. [13] led a reversibility study in a thermobalance with a

10 nmMg(OH)2 powder [32]. In order to get a durable reversibility of

the reaction, the authors concluded that the system temperature had

to be between 363 and 383 K and the water partial pressure between

47.4 and 57.8 kPa. They observed a constant reversibility with a

conversion rate of 50%.

Kato et al. [34,35] have also developed a packed bed reactor

used as a chemical heat pump (Fig. 10).

The packed bed (1.8 kg Mg(OH)2) was suspended to a balance

in order to measure the mass change of the bed during the

reaction. An evaporator and a vacuum pump controlled the water

partial pressure in the system. A heating tube controlled the

temperature in the system. The operating conditions of dehydra-

tion reaction were a temperature of 703 K and a water partial

pressure of 14.7 kPa. Regarding the hydration reaction, several

water pressures were tested: 31.2, 47.4 and 70.1 kPa. The results

showed the possibility to use the chemical heat pump to produce

heat at 383 K.

In 2005, Kato et al. [36] developed a new heat pump which is

able to operate with partial steam pressure from 30 to 203 kPa.

Higher pressures increase the return temperature during the

hydration reaction. Here, 52 kg of Mg(OH)2 are introduced in

Fig. 9. Equilibrium relationship for metal oxide/water reactions systems [26].Fig. 7. Solar fluidized bed reactor [19].

Fig. 8. Solar rotary kiln (a) [19] and (b) [21].



the reactor which is heated by an electrical resistor during the

dehydration reaction. For the hydration reaction, the study of the

influence of steam partial pressure underlines that for a steam

pressure of 203 kPa, the temperatures in the reactor were close to

473 K. Later, the works [31,37–39] dealt with the shaping and the

doping of the material in order to diminish the costs and the

minimum temperature for dehydration. To reduce the price of Mg

(OH)2, the authors used magnesium hydroxide of sea water

which they have purified and obtained a cost divided by 10.

Concerning the doping, the authors used Ni and LiCl and a

decrease of the dehydration temperature of Mg(OH)2 (around

100 K) was observed.

Table 5 presents the advantages and the drawbacks of the MgO/

Mg(OH)2 system as thermochemical TES system.

3.4.2. Hydration/dehydration of calcium oxide

The reaction is [40]:

Ca OHð Þ2ðsÞþΔHr3CaOðsÞþH2OðgÞ with ΔHr ¼ 104 kJ mol"1

The operating temperatures range from 623 to 1173 K with

steam partial pressures from 0 to 2 bar. Many authors studied this

reaction for many applications: heat pump, heat storage of con-

centrated solar plants, motors preheating or electrical generation

on the moon. In the following sub-sections, these works are

classified into two categories: the heat pumps and the thermal

energy storage.

3.4.2.1. The heat pumps. Matsuda et al. [41] studied the kinetics of

both the Ca(OH)2 dehydration and the CaO hydration in a

thermogravimetric apparatus for heat pump applications. The

study have been done with 5 μm Ca(OH)2 particles and 10 mg of

product. The following table lists the range of temperature and

steam partial pressure for both hydration and dehydration

reactions. Table 6

From the end of the 90s to the beginning of the 2000s, most of

the studies have been carried out in a Japanese institute, the

Kyushu Institute of Technology (KIT) ([41–47]). These works

allowed developing and simulating the chemical heat pumps

using the couple CaO/Ca(OH)2. These heat pumps work in closed

Fig. 10. (a) Laboratory-scale chemical heat pump; (b) reactor bed design [30].

Table 5

Advantages and drawbacks of the MgO/Mg(OH)2 system.

Reaction Advantages Drawbacks

Mg(OH)2þ∆Hr3MgOþH20 % No catalyst

% Material energy density (Theoretical: 380 KWh m"3)

% Operating pressure (1 bar)

% Good reversibility of the reaction

% No by-product

% Product separation (gas-solid)

% No toxicity

% Experimental feedback (10 years)

% Availability and price of the product

% Change of volume

% No industrial feedback

% Product reactivity (50%)

% Doping

% Low thermal conductivity

Table 6

Range of temperature and steam partial pressure for both hydration and dehydra-

tion reactions for the kinetic study of Mastuda et al. [41].

Reaction Temperatures (K) Steam concentration (vol%)

Dehydration 693–723 1.5–6%

Hydration 356–611 2.0–15.7%



system and Fig. 11 presents the principle and the operating

schemes.

3.4.2.2. The thermal heat storage. Ervin [3] was the first to suggest

using this reaction in a thermal energy storage plant. He achieved

290 cycles with an average conversion rate of 95%. Kanzawa and

Arai [48] developed a fixed bed reactor. To increase the heat

transfer during the Ca(OH)2 dehydration, they proposed to use a

reactor with copper fins. They made a 2D unsteady state model for

the fixed bed and determined the optimal distance between the

copper fins. Darkwa [49] aimed at developing an energy storage

system for the preheating of motors. Experimental and numerical

studies have been carried out and he underlined the fact that the

heat transfer into the installation limits the reaction. Azpiazu et al.

[50] studied the reversibility in a fixed bed reactor with copper

fins and 20 cycles were achieved. They observed that using an air

atmosphere causes the apparition of a side reaction: the calcium

oxide carbonation.

The following studies focus on the development of a thermo-

chemical storage system for applications in solar plants.

Wereko-Brobby [51] worked on the feasibility of the storage

system applied to a 1 MWh concentrated solar plant. He suggested

using a fluidized bed reactor and he obtained a storage system

yield of 45% with reactant storage temperature of 298 K. Brown

et al. [52] carried out a technical-economic survey on the devel-

opment of a thermochemical storage process. The results demon-

strate the feasibility of the process for a solar plant with an energy

efficiency of 80% and an initial price for the installation of

45 $ kWh"1
th . Fujii et al. [53] achieved a study on the kinetics of

the particles of calcium hydroxide and calcium oxide as pellets and

spheres. The work has been realized with pure products (spheres

and pellets) and doped products (pellet) with copper, zinc and

aluminum. The best results, for the reaction kinetics are obtained

with aluminum doping for an optimal concentration of 15% in

weight. Between 2010 and 2013, Schaube et al. [54,55] carried out

a survey on the feasibility of the storage process in a thermo-

dynamical solar plant. They used a fixed bed reactor and simulated

a one dimensional chemical reactor in unsteady state. They

concluded that the heat transfer between the bed and the wall

was not a viable solution because the heat conductivity of the

material is too low. To improve the heat transfer, they suggested

using the circulating gas into the reactor as the heat transfer fluid.

In 2012, Schaube et al. [56] worked on the physic-chemical

characterization of the products. The authors determined the

particles diameter, the specific heat, the reaction enthalpy and

the kinetics of both hydration and dehydration with a thermo-

gravimetric analysis. They achieved 100 cycles without reversi-

bility loss. Later, Schaube et al. [57,58] led experimental and

numerical studies on the technology of the fixed bed reactor. They

used the reactor presented on Fig. 12 for the experimental part and

achieved 25 cycles without reversibility loss. The numerical model

in two dimensions and in unsteady state has been developed with

the COMSOL software. The authors obtained a good accuracy

between the simulated and the experimental results.

Table 7 presents the advantages and the drawbacks of the CaO/

Ca(OH)2 system as a thermochemical TES system.

3.5. The REDOX system

The general reaction form is

MxOyðsÞþΔHr3xMðsÞþy=2O2

These reactions occur at temperatures between 623 and 1373 K.

Only few studies have been made on these materials. The first

studied couple was BaO2/BaO in 1978 [59] and after 30 years without

survey, DLR is interested again in these systems for storage applica-

tion in tower centrals.

3.5.1. Oxidation/decomposition of barium peroxide

The reaction is

2BaO2ðsÞþΔHr32BaOðsÞþO2ðgÞ with ΔHr ¼ 77 kJ mol"1
:

This reaction occurs at temperatures between 673 and 1300 K

for partial oxygen pressure between 0 and 10 bar. Preliminary

thermogravimetric studies showed the potential of BaO/BaO2

system for a thermochemical TES application [59,60]. Some

difficulties arose when trying to achieve the complete conversion

of reaction, because of mass transfer limitations and a crusting of

the material surface [60]. The kinetic equations of both forward

and reverse reactions were determined and the reaction reversi-

bility had shown a decrease after the first cycle [59]. Recently,

Wong et al. [60] studied this couple and compared it with other

redox couples for a feasibility study in tower centrals

Fig. 12. Experimental setup of a laboratory scale of the DLR system [34].

Fig. 11. Standard type chemical heat pump [39].



Table 8 presents the advantages and the drawbacks of the BaO/

BaO2 system as thermochemical TES system.

3.5.2. Other oxidation/decomposition peroxide couples

More recently, a study about the potential of six oxide/peroxide

couples for a thermochemical TES application has been investi-

gated by Wong et al. [61]. To assess the relevance of various

couples, a thermodynamic analysis, an engineering feasibility

study and thermogravimetric measurements have been done.

The relevant couples are: Co3O4/CoO, MnO2/Mn2O3, CuO/Cu2O,

Fe2O3/FeO, Mn3O4/MnO and V2O5/VO2. Nevertheless, for their

application, the most promising reaction is:

2Co3O4ðsÞþΔHr36CoOðsÞþO2ðgÞ with ΔHr ¼ 205 kJ mol"1
:

The decomposition occurs at 1123 K in a nitrogen atmosphere and

the oxidation occurs at 973 K in an air atmosphere with partial oxygen

pressure between 0 and 1 bar. This reaction has been implemented

both in a thermogravimetric balance and in a fixed bed [62]. 500

cycles have been achieved and the morphologic study of the product

showed a progressive magnification of the particles progressively

during the cycles. Buckingham et al. [63] have done a numerical

analysis of packed bed parameters and operating conditions. They

Table 8

Advantages and drawbacks of the BaO/BaO2 system.

Reaction Advantages Drawbacks

2BaO2þ∆Hr32BaOþO2 % Operating temperature (400–1300 K)

% O2 reactant

% No catalyst

% No side reaction

% Products separation (gas-solid)

% Operating pressure (0–10 bar)

% Incomplete conversion of both forward and reverse reactions

% No experiment feedback

Table 9

Advantages and drawbacks of the Co3O4/CoO system.

Reaction Advantages Drawbacks

2Co3O4þ∆Hr36CoOþO2 % High reaction enthalpy ($205 kJ mol"1)

% O2 as a reactant

% No catalyst

% No by product

% Reversibility (500 cycles)

% Products separation (gas-solid)

% Few experiment feedback

% Storage of O2

% Toxicity of the products

% Cost of the products

Table 7

Advantages and drawbacks of the CaO/Ca(OH)2 system.

Reaction Advantages Drawbacks

Ca(OH)2þ∆Hr3CaOþH20 % No catalyst

% Material energy density (Experimental: 300 KWh m"3)

% Reversibility of the reaction ($100 cycles)

% No by-product

% Product separation (gas-solid)

% Operating pressure (1 bar)

% Availability and price of the product

% Nontoxic product

% Experimental feedback (10 years)

% Agglomeration and sintering

% Change of volume (95%)

% Low conductivity

Table 10

Advantages and drawbacks of the NH4HSO4/NH3/H2O/SO3 system.

Reaction Advantages Drawbacks

NH4HSO4þ∆Hr3NH3þH2OþSO3 % Material energy density (Theoretical: 860 KWh m"3)

% No catalyst

% Product separation (gas-liquid)

% Corrosive products

% Toxic products

% No experiment feedback



concluded that a packed bed design for metal oxide TES couple will

not be economically competitive and recommended to study a

“moving bed” design, as a rotary kiln, to improve the TES process.

Neises et al. [64] used a rotary kiln based on the work of Buckingham

et al. [63] to implement the reaction which is heated through a solar

furnace of 22 kW. They carried out a reversibility study on three

samples: pure Co3O4 and two mixtures of doped Co3O4 with alumina

oxide. They achieved 30 cycles and demonstrated the feasibility of the

process with an energetic density in the reactor of 95 kWhm"3.

Table 9 presents the advantages and the drawbacks of the

Co3O4/CoO system as the thermochemical TES system.

3.6. Ammonia system

Historically, two reactions using the “Ammonia system” have

been studied. The first one, studied by Wenthworth et Chen [5] is

the decomposition of NH4HSO4 but only few surveys have been

carried out. The second one, studied by the Australian National

University (ANU) since 40 years, is the decomposition/synthesis of

the ammonia for thermal energy storage.

Fig. 14. Solar ammonia dissociation reactor (a) design of the cavity receiver with 15 kWsol and its assembly on ANU0s 20 m2 dish without insulation fitted; and (b) reactor in

operation on the ANU0s 20 m2 dish [49].

Fig. 13. Installation of a parabolic through power plant with chemical energy

storage [49].

Fig. 15. Design of the 10 kWth ammonia synthesis heat recovery [49].



3.6.1. The ammonium hydrogen sulfate system

The reaction is

NH4HSO4ðlÞþΔHr3NH3ðgÞþH2OðgÞþSO3ðgÞ with ΔHr ¼ 336 kJ mol
"1

:

A preliminary study showed the potential of this system for

TES application [5]. The reaction occurs at 690 K and 1.46 atm.

No catalysts are required for both forward and reverse reactions.

A process flowsheet was designed to carry out a thermochemical

TES process based on ammonium hydrogen sulfur cycle [5].

Prengle et al. [5] defined the thermal efficiency as the ratio

between the released heat energy and the required solar energy.

The preliminary energy analysis of the cycle confirmed the

engineering feasibility of the process with a thermal efficiency of

62% and a theoretical energetic density of 860 kWh m"3.

Table 10 presents the advantages and the drawbacks of the

NH4HSO4/NH3/H2O/SO3 system as the thermochemical TES system.

3.6.2. Dissociation/synthesis of NH3

The reaction is

2NH3ðgÞþΔHr3N2ðgÞþ3H2ðgÞ with ΔHr ¼ 66:9 kJ mol"1
:

This reaction occurs at temperatures between 673 and 973 K and

pressures between 10 and 30 bar. The Haber–Bosch process is based

on this reaction for the NH3 production since 100 years. A lot ofFig. 16. ANU0s 500 m2 paraboloidal dish concentrator [57].

Fig. 17. Schematic diagram of the EVA-ADAM process cycle for heat conversion and transportation of nuclear energy [58].

Table 11

Advantages and drawbacks of the NH3/N2/H2 system.

Reaction Advantages Drawbacks

2NH3(g)þ∆Hr3N2(g)þ3H2(g) % Ammoniac synthesis known since 100 years (Haber-Bosch process)

% Ammoniac: liquid at ambient conditions

% ANU0s important experiment feedback (40 years)

% No side reaction

% H2 and N2 storage (gases)

% Use of catalyst (Fe/Co)

% Operating pressure (80–200 bar)

% Incomplete conversion of both forward and

reverse reactions

Fig. 18. Schematic diagram of reforming methane process cycle using carbon dioxide for heat conversion and transportation of concentrated solar energy [58].



studies (e.g.: kinetic studies by Temkin et al. [65]) have already been

done for this application (NH3 production). Fig. 13 shows the scheme

of the installation developed and used by the Australian National

University (ANU) for a thermochemical TES application.

Both forward and reverse reactions are catalysed. The catalyst

materials used in the endothermic reactor and in the exothermic

reactor are respectively the Haldor-TopsǾe “DNK-2R” [66] and

Haldor-TopsǾe “KM1” [67].

The works on a thermochemical TES system using the ammo-

nia system began with Carden [68] and Williams and Carden [69].

They assessed a theoretical energetic efficiency of 90% if the

conversion rate of the ammonia into the reactor was higher than

60%. Later, the thermodynamic limitations associated with the use

of the reversible reaction of the ammonia have been studied by

Lovegrove et al. [70,71] thanks to a pseudo-homogeneous two

dimensions model of reactor. The first solar driven high pressure

ammonia reactor of 1 kW has been successfully tested in a closed

loop system [67]. This reactor allowed the validation of a numer-

ical model to predict the temperatures in the catalyst, on the wall

and in the gas, and also the conversion rate and the product

flowrates. A detailed study of a 10 MWe base load power plant in

Australia, has indicated that levelled electricity costs lower than

AUS $ 0.15/kWh were potentially achievable [72]. A scale-up

(Fig. 14) of the first solar driven ammonia reactor has been done

in order to accept the full (¼15 kW) input from the ANU0s 20 m2

dish system [66].

Fig. 15 shows the design of the ammonia synthesis heat

recovery reactor of 10 kWth [66].

A new 500 m2 parabolic dish solar concentrator has been built

by the ANU in 2009 (Fig. 16). The receiver geometry was numeri-

cally optimized to improve the dissociation reaction [73]. This

numerical model can then be applied to develop an ammonia

receiver for the 500 m2 SG4 dish concentrator.

ANU has done the most advanced works in this sector, by

working for over 40 years on the thermochemical energy storage

using the dissociation and synthesis of ammonia. ANU is also the

first laboratory which continuously store and release energy

during 24 h thanks to its closed loop system composed of a solar

reactor of 15 kW for the dissociation reaction and a synthesis

reactor of 10 kW [75].

Table 11 presents the advantages and the drawbacks of the

NH3/N2/H2 system as the thermochemical TES system.

3.7. Organic systems

3.7.1. Methane reforming

Reforming of methane using steam or carbon dioxide is

industrially used for the H2 production. These reactions have also

been studied for heat transportation. There is no study about the

TES system based on the methane reforming, but this could be an

application. Both reactions are catalysed by Ni-based or Ru-based

catalysts [76].

3.7.1.1. Methane steam reforming. The reaction is

CH4ðgÞþH2OðlÞþΔHr3COðgÞþ3H2ðgÞ with ΔHr ¼ 250 kJ mol"1
CH4

:

The side reaction is

COðgÞþH2OðlÞ3CO2ðgÞþH2ðgÞþΔHr with ΔHr ¼ "41:2kJ mol"1
CO:

This reaction occurs at temperatures between 873 and 1223 K

and pressures between 20 and 150 bar. In 1975, Kugelers et al. [77]

suggested to use the reaction of methane steam reforming for the

transport of the thermal energy coming from the nuclear plants. The

authors made a feasibility survey and proposed a process flowsheet

(Fig. 17) with energetic efficiencies between 60% and 73%. In order to

study and understand the phenomena involved during the reaction,

a first pilot plant, EVA I, was built by Fedders et al. [78]. An

industrial-scale pilot plant EVA I/ADAM I of 300 kW was developed

in 1979 at the Intitut für Reaktorbauelemente in Germany. 850

operating hours have been investigated. They showed the feasibility

of the energy transport system by means of the reversible reaction

[79]. More recently, a new design process (ICAR: immediate catalytic

accumulation of ionizing radiation energy) was developed by

Aristov et al [80]. The endothermic reactor is directly combined

with the nuclear reactor to improve the process efficiency.

3.7.1.2. Methane reforming using carbon dioxide. Methane refor-

ming using carbon dioxide presents an advantage for a TES

Fig. 19. Schematic of the solar chemical receiver–reactor [64].

Table 12

Advantages and drawbacks of the CH4/CO2 and the CH4/H2O systems.

Reaction Advantages Drawbacks

CH4þH2Oþ∆Hr33H2þCO % Industrial feedback

% High reaction enthalpy ($250 kJ mol"1)

% Gas phase

% H2 storage

% Cost of CH4

% Side reactions

% Use of catalyst

% Low reversibility

CH4þCO2þ∆Hr32H2þ2CO



application compared to the steam reforming process. It does not

involve water evaporation [76].

The carried out reaction is

CH4ðgÞþCO2ðgÞþΔHr32COðgÞþ2H2ðgÞ with ΔHr ¼ 247 kJ mol"1
CH4 :

The side reaction is:

CO2ðgÞþH2ðgÞþΔHr3COðgÞþH2OðgÞ with ΔHr ¼ "41:2 kJ molCO
"1

:

Fig. 18 shows the process flowsheet. During the endothermic

reaction, methane and carbon dioxide are decomposed at a

temperature between 973 and 1133 K and absolute pressure of

3.5 bar to form hydrogen and carbon monoxide. Edwards and

Maitra [81] outlined the potential of this reforming for TES

application. Edwards et al. [82] achieved a technical-economic

survey in order to evaluate the energetic efficiencies of two

different processes for a production of 100 MWe. The first one

works in closed loop (Solar/Rankine cycle plant) and the second

one in open loop (Solar/Gas turbine combined cycle). Both cases

have energetic efficiencies of 33.6% and 44.6%.

Later, the DLR [83] developed a solar reactor of 300 kW to

implement the reforming reaction (Fig. 19). This solar reactor has

been used in a global test loop at the WIS (Weizmann Institute of

Science) in Rehovot, Israel. Nevertheless, in spite of good conver-

sion rate of methane, many problems of catalyst deactivation

appeared due to a deposit of sodium.

Table 12 presents the advantages and the drawbacks of the

CH4/CO2 and the CH4/H2O systems as thermochemical TES system.

3.7.2. Cyclohexane dehydrogenation – benzene hydrogenation

The carried out reaction is

C6H12ðgÞþΔHr3C6H6ðgÞþ3H2ðgÞ with ΔHr ¼ 206 kJ mol"1
:

This reaction is well known in the chemical industry and the

reactor technologies to carry out both forward and reverse reactions

are known. During the charging step, the cyclohexane is heated up to

566 K at 1 bar at which the endothermic reaction occurs. The

decomposition reaction products are hydrogen (gas) and benzene

(gas). During the storing step, benzene can be stored as a liquid at

atmospheric pressure and hydrogen has to be compressed and stored.

During the discharging step, benzene and hydrogen are mixed at

610 K and 70 bar to generate heat and the initial cyclohexane. Both

forward and reverse reactions are catalysed [4]. Process simulations of

chemical heat pumps were investigated to improve the coefficient of

performance (COP) [80,84].

Table 13 presents the advantages and the drawbacks of the

C6H12/C6H6 system as the thermochemical TES system.

Table 13

Advantages and drawbacks of the C6H12/C6H6 system.

Reaction Advantages Drawbacks

C6H12þ∆Hr3C6H6þ3H2 % Industrial feedback

% Operating temperature ($580 K)

% H2 storage

% Use of Catalyst

% Secondary reaction

% Toxic products

% Reversibility

Table 14

Advantages and drawbacks of the SO3/SO2/O2 system.

Reaction Advantages Drawbacks

2SO3þ∆Hr32SO2þO2 % Industrial feedback with the H2SO4 production

% Operating temperature (773–1223 K)

% O2 as a reactant

% Corrosive product

% Toxic product

% Need of catalyst

% Storage of H2

Fig. 20. Energy density versus turning temperature for the reversible reactions

studied as a TES system in the literature: (a) volumetric energy density; and

(b) mass energy density.
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3.7.3. Thermal dissociation of sulfur trioxide

The reaction is

2SO3ðgÞþΔHr32SO2ðgÞþO2ðgÞ with ΔHr ¼ 98 kJ mol"1
so3ðGÞ

:

This reaction occurs at temperatures between 773 and 1373 K

for pressures between 0.1 and 0.5 MPa. During the charging step,

the liquid sulfur trioxide is heated up to vaporization. This phase

change requires 43 kJ mol"1
SO3 lð Þ

. The gas product is heated up to

the decomposition temperature (1073–1373 K), at which the

endothermic reaction occurs. The endothermic reaction has to be

catalysed, generally with V2O5 [4,85]. The decomposition reaction

products are sulfur dioxide (gas) and oxygen (gas). During the

discharging step, the oxygen is added to the sulfur dioxide to

regenerate the heat (773–973 K) and the initial sulfur trioxide. A

process analysis has been done by Chubb [85] to use this reaction

in a Solchem system to produce a continuous 24 h electricity

output of 100 MW with a 72 h storage. A process simulation

assessed the thermal efficiency to 58% [4].

Table 14 presents the advantages and the drawbacks of the SO3/

SO2/O2 system as the thermochemical TES system.

3.8. Summary of case studies

Several numerical, experimental and technological studies

concerning thermochemical energy storage have been found in

the literature. Fig. 20a and b plot the volumetric energy density

and the gravimetric energy density versus the turning tempera-

ture of the studied reactions. To assess the volumetric energy

density of the solid reactant, the bulk density with a packed bed

porosity of 0.5 has been chosen. Usually, a packed bed porosity of

spherical particle is between 0.4 and 0.5 [86]. The volume of pores

inside a particle is considered to be equal to zero.

Fig. 20 is extremely useful to quickly screen the candidate

reactions in the desired temperature and the energy density

ranges. Each reaction system is detailed in Table 15. Table 15 lists

the reversible reaction, the phase of the A reactant, the reaction

enthalpy by mol of reactant A, the operating temperatures, the

energy density and the related works and technologies.

4. Conclusion

This paper presents a state of the art of the current numerical

and experimental researches on chemical reactions for high

temperature thermochemical heat energy storage. Most of the

described systems were only tested on laboratory scale until now.

This paper has also offered an updated review of the high

temperature (573–1273 K) thermochemical TES system which

have the potential to become an important part of sustainable

handling of energy in a close future. The following conclusions

that can be drawn are

% The energy density of a thermochemical TES system

($500 kWhm"3) is 5 to 10 times higher than latent heat

storage systems and sensible heat storage systems respectively.
% Thermochemical TES systems appear to be the most promising

way to store solar thermal energy during a long-term period.

Indeed, both storage period and transport distance are theoreti-

cally unlimited because there is no loss of thermal energy during

storage as products can be stored at ambient temperature.
% Laboratory-scale experiments, numerical and technological

studies have demonstrated the feasibility of several reaction

systems for a TES application.
% The system involving the ammonia dissociation and synthesis

is the most mature technology for a high temperature

TES application with 40 years of researches and pilot-scale

equipment.
% The dehydration/hydration of the Ca(OH)2/CaO couple shows a

high potential for TES application but future works need to

focus on the intensification of heat and mass transfers inside

the reactor.
% For a high temperature thermochemical heat storage (CSP

application), the following chemical reactions seem to be the

most interesting ones in terms of actual development, cost and

temperature range:

MgH23MgþH2

PbCO33PbOþCO2

CaðOHÞ23CaOþH2O

NH33N2þH2

Nowadays, the storage system with the reaction couple

NH33N2þH2 is the most mature one especially with the ANU

works and their 40 years feedback. Nevertheless, recently the

reaction couple Ca(OH)23CaOþH2O appears to be promising for

thermochemical heat storage and many studies and projects

contribute to develop this system. The main barriers to remove

are linked to the reactor heat and mass transfers. As a consequence

the development of intensified heat exchanger/reactor could be

interesting to study. Mass transfer issues have also to be

addressed, especially if fast hydration and dehydration kinetics

are expected. A compromise between particle diameter and mass

transfer limitation will have to be found and future works could

focus on the functionalization of the particles, supported particles

or doping. Moreover, for G/S reactions in general, an effort should

be done on the optimization of the particle size and the reaction

bed structure to guarantee a constant heat output during the

discharging step. This optimization must be done without com-

promising, as far as possible, the system compactness.

Another area of research is the optimization of the temperature

level during charging/discharging steps. The objective is to dimin-

ish the difference of temperature between both steps to improve

the efficiency and the ease to control the process and the down-

stream turbine for instance.

At present, only laboratory and pilot experiments have been

done and scale-up is an important point to address. Large-scale

experiments are necessary to prove the feasibility of the thermo-

chemical TES system for both short and long-term storage. The

process must be reversible with a constant conversion rate and

without degradation after a large number of cycles. To support the

scale-up procedure, numerical models of the storage process have

to be developed. The objective is to insert them in the whole

power plant scheme to assess the performances according to the

application case (seasonal storage, 24 h electricity production,

peak load,…).

The future works should also allow the definition of a meth-

odology to choose suitable materials for a given TES application.

Technical-economic studies will be required to assess the profit-

ability of the whole TES process. Thus, storage materials, storage

equipment, control strategies of the system and applications cases

are important points to address.
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