109 research outputs found
The quality of life and cost utility of home nocturnal and conventional in-center hemodialysis
The quality of life and cost utility of home nocturnal and conventional in-center hemodialysis.BackgroundHome nocturnal hemodialysis is an intensive form of hemodialysis, where patients perform their treatments at home for about 7hours approximately 6 nights a week. Compared with in-center conventional hemodialysis, home nocturnal hemodialysis has been shown to improve physiologic parameters and reduce health care costs; however, the effects on quality of life and cost utility are less clear. We hypothesized that individuals performing home nocturnal hemodialysis would have a higher quality of life and superior cost utility than in-center hemodialysis patients.MethodsHome nocturnal hemodialysis patients and a demographically similar group of in-center hemodialysis patients from a hospital without a home hemodialysis program underwent computer-assisted interviews to assess their utility score for current health by the standard gamble method.ResultsNineteen in-center hemodialysis and 24 home nocturnal hemodialysis patients were interviewed. Mean annual costs for home nocturnal hemodialysis were about 55,139 ±66,367 ±71,443/quality-adjusted life-year (QALY), while for in-center hemodialysis it was 45,932. The 95% CI for the ICER, and 2500 bootstrap iterations of the ICER all fell below the cost-effectiveness ceiling of 11,227 to $35,669.ConclusionHome nocturnal hemodialysis is associated with a higher quality of life and a superior cost utility when compared to in-center hemodialysis
Regression of left ventricular hypertrophy after conversion to nocturnal hemodialysis
Regression of left ventricular hypertrophy after conversion to nocturnal hemodialysis.BackgroundLeft ventricular hypertrophy (LVH) is an independent risk factor for mortality in the dialysis population. LVH has been attributed to several factors, including hypertension, excess extracellular fluid (ECF) volume, anemia and uremia. Nocturnal hemodialysis is a novel renal replacement therapy that appears to improve blood pressure control.MethodsThis observational cohort study assessed the impact on LVH of conversion from conventional hemodialysis (CHD) to nocturnal hemodialysis (NHD). In 28 patients (mean age 44 ± 7 years) receiving NHD for at least two years (mean duration 3.4 ± 1.2 years), blood pressure (BP), hemoglobin (Hb), ECF volume (single-frequency bioelectrical impedance) and left ventricular mass index (LVMI) were determined before and after conversion. For comparison, 13 control patients (mean age 52 ± 15 years) who remained on self-care home CHD for one year or more (mean duration 2.8 ± 1.8 years) were studied also. Serial measurements of BP, Hb and LVMI were also obtained in this control group.ResultsThere were no significant differences between the two cohorts with respect to age, use of antihypertensive medications, Hb, BP or LVMI at baseline. After transfer from CHD to NHD, there were significant reductions in systolic, diastolic and pulse pressure (from 145 ± 20 to 122 ± 13mm Hg, P < 0.001; from 84 ± 15 to 74 ± 12mm Hg, P = 0.02; from 61 ± 12 to 49 ± 12mm Hg, P = 0.002, respectively) and LVMI (from 147 ± 42 to 114 ± 40 g/m2, P = 0.004). There was also a significant reduction in the number of prescribed antihypertensive medications (from 1.8 to 0.3, P < 0.001) and an increase in Hb in the NHD cohort. Post-dialysis ECF volume did not change. LVMI correlated with systolic blood pressure (r = 0.6, P = 0.001) during nocturnal hemodialysis. There was no relationship between changes in LVMI and changes in BP or Hb. In contrast, there were no changes in BP, Hb or LVMI in the CHD cohort over the same time period.ConclusionsReductions in BP with NHD are accompanied by regression of LVH
Choosing to live with home dialysis-patients' experiences and potential for telemedicine support: a qualitative study
<p>Abstract</p> <p>Background</p> <p>This study examines the patients' need for information and guidance in the selection of dialysis modality, and in establishing and practicing home dialysis. The study focuses on patients' experiences living with home dialysis, how they master the treatment, and their views on how to optimize communication with health services and the potential of telemedicine.</p> <p>Methods</p> <p>We used an inductive research strategy and conducted semi-structured interviews with eleven patients established in home dialysis. Our focus was the patients' experiences with home dialysis, and our theoretical reference was patients' empowerment through telemedicine solutions. Three informants had home haemodialysis (HHD); eight had peritoneal dialysis (PD), of which three had automated peritoneal dialysis (APD); and five had continuous ambulatory peritoneal dialysis (CAPD). The material comprises all PD-patients in the catchment area capable of being interviewed, and all known HHD-users in Norway at that time.</p> <p>Results</p> <p>All of the interviewees were satisfied with their choice of home dialysis, and many experienced a normalization of daily life, less dominated by disease. They exhibited considerable self-management skills and did not perceive themselves as ill, but still required very close contact with the hospital staff for communication and follow-up. When choosing a dialysis modality, other patients' experiences were often more influential than advice from specialists. Information concerning the possibility of having HHD, including knowledge of how to access it, was not easily available. Especially those with dialysis machines, both APD and HHD, saw a potential for telemedicine solutions.</p> <p>Conclusions</p> <p>As home dialysis may contribute to a normalization of life less dominated by disease, the treatment should be organized so that the potential for home dialysis can be fully exploited. Pre-dialysis information should be unbiased and include access to other patients' experiences. Telemedicine may potentially facilitate a communication-based follow-up and improve safety within the home setting, making it easier to choose and live with home dialysis.</p
The effects of frequent nocturnal home hemodialysis: the Frequent Hemodialysis Network Nocturnal Trial
Prior small studies have shown multiple benefits of frequent nocturnal hemodialysis compared to conventional three times per week treatments. To study this further, we randomized 87 patients to three times per week conventional hemodialysis or to nocturnal hemodialysis six times per week, all with single-use high-flux dialyzers. The 45 patients in the frequent nocturnal arm had a 1.82-fold higher mean weekly stdKt/Vurea, a 1.74-fold higher average number of treatments per week, and a 2.45-fold higher average weekly treatment time than the 42 patients in the conventional arm. We did not find a significant effect of nocturnal hemodialysis for either of the two coprimary outcomes (death or left ventricular mass (measured by MRI) with a hazard ratio of 0.68, or of death or RAND Physical Health Composite with a hazard ratio of 0.91). Possible explanations for the left ventricular mass result include limited sample size and patient characteristics. Secondary outcomes included cognitive performance, self-reported depression, laboratory markers of nutrition, mineral metabolism and anemia, blood pressure and rates of hospitalization, and vascular access interventions. Patients in the nocturnal arm had improved control of hyperphosphatemia and hypertension, but no significant benefit among the other main secondary outcomes. There was a trend for increased vascular access events in the nocturnal arm. Thus, we were unable to demonstrate a definitive benefit of more frequent nocturnal hemodialysis for either coprimary outcome
Cardiac and vascular structure and function parameters do not improve with alternate nightly home hemodialysis: An interventional cohort study
Background: Nightly extended hours hemodialysis may improve left ventricular hypertrophy and function and endothelial function but presents problems of sustainability and increased cost. The effect of alternate nightly home hemodialysis (NHD) on cardiovascular structure and function is not known
Hemodialysis in children: general practical guidelines
Over the past 20 years children have benefited from major improvements in both technology and clinical management of dialysis. Morbidity during dialysis sessions has decreased with seizures being exceptional and hypotensive episodes rare. Pain and discomfort have been reduced with the use of chronic internal jugular venous catheters and anesthetic creams for fistula puncture. Non-invasive technologies to assess patient target dry weight and access flow can significantly reduce patient morbidity and health care costs. The development of urea kinetic modeling enables calculation of the dialysis dose delivery, Kt/V, and an indirect assessment of the intake. Nutritional assessment and support are of major importance for the growing child. Even if the validity of these “urea only” data is questioned, their analysis provides information useful for follow-up. Newer machines provide more precise control of ultrafiltration by volumetric assessment and continuous blood volume monitoring during dialysis sessions. Buffered bicarbonate solutions are now standard and more biocompatible synthetic membranes and specific small size material dialyzers and tubing have been developed for young infants. More recently, the concept of “ultrapure” dialysate, i.e. free from microbiological contamination and endotoxins, has developed. This will enable the use of hemodiafiltration, especially with the on-line option, which has many theoretical advantages and should be considered in the case of maximum/optimum dialysis need. Although the optimum dialysis dose requirement for children remains uncertain, reports of longer duration and/or daily dialysis show they are more effective for phosphate control than conventional hemodialysis and should be considered at least for some high-risk patients with cardiovascular impairment. In children hemodialysis has to be individualized and viewed as an “integrated therapy” considering their long-term exposure to chronic renal failure treatment. Dialysis is seen only as a temporary measure for children compared with renal transplantation because this enables the best chance of rehabilitation in terms of educational and psychosocial functioning. In long term chronic dialysis, however, the highest standards should be applied to these children to preserve their future “cardiovascular life” which might include more dialysis time and on-line hemodiafiltration with synthetic high flux membranes if we are able to improve on the rather restricted concept of small-solute urea dialysis clearance
- …