40 research outputs found

    Telomere Dysfunction Is Associated with Altered {DNA} Organization in Trichoplein/Tchp/Mitostatin ({TpMs}) Depleted Cells

    Get PDF
    Abstract: Recently, we highlighted a novel role for the protein Trichoplein/TCHP/Mitostatin (TpMs), both as mitotic checkpoint regulator and guardian of chromosomal stability. TpMs-depleted cells show numerical and structural chromosome alterations that lead to genomic instability. This condition is a major driving force in malignant transformation as it allows for the cells acquiring new functional capabilities to proliferate and disseminate. Here, the effect of TpMs depletion was investigated in different TpMs-depleted cell lines by means of 3D imaging and 3D Structured illumination Microscopy. We show that TpMs depletion causes alterations in the 3D architecture of telomeres in colon cancer HCT116 cells. These findings are consistent with chromosome alterations that lead to genomic instability. Furthermore, TpMs depletion changes the spatial arrangement of chromosomes and other nuclear components. Modified nuclear architecture and organization potentially induce variations that precede the onset of genomic instability and are considered as markers of malignant transformation. Our present observations connect the tumor suppression ability of TpMs with its novel functions in maintaining the proper chromosomal segregation as well as the proper telomere and nuclear architecture. Further investigations will investigate the connection between alterations in telomeres and nuclear architecture with the progression of human tumors with the aim of developing personalized therapeutic interventions

    Targeting the Interplay of Independent Cellular Pathways and Immunity: A Challenge in Cancer Immunotherapy

    Get PDF
    Immunotherapy is a cancer treatment that exploits the capacity of the body’s immune system to prevent, control, and remove cancer. Immunotherapy has revolutionized cancer treatment and significantly improved patient outcomes for several tumor types. However, most patients have not benefited from such therapies yet. Within the field of cancer immunotherapy, an expansion of the combination strategy that targets independent cellular pathways that can work synergistically is predicted. Here, we review some consequences of tumor cell death and increased immune system engagement in the modulation of oxidative stress and ubiquitin ligase pathways. We also indicate combinations of cancer immunotherapies and immunomodulatory targets. Additionally, we discuss imaging techniques, which are crucial for monitoring tumor responses during treatment and the immunotherapy side effects. Finally, the major outstanding questions are also presented, and directions for future research are described

    ROS, Cell Senescence, and Novel Molecular Mechanisms in Aging and Age-Related Diseases

    Get PDF
    The aging process worsens the human body functions at multiple levels, thus causing its gradual decrease to resist stress, damage, and disease. Besides changes in gene expression and metabolic control, the aging rate has been associated with the production of high levels of Reactive Oxygen Species (ROS) and/or Reactive Nitrosative Species (RNS). Specific increases of ROS level have been demonstrated as potentially critical for induction and maintenance of cell senescence process. Causal connection between ROS, aging, age-related pathologies, and cell senescence is studied intensely. Senescent cells have been proposed as a target for interventions to delay the aging and its related diseases or to improve the diseases treatment. Therapeutic interventions towards senescent cells might allow restoring the health and curing the diseases that share basal processes, rather than curing each disease in separate and symptomatic way. Here, we review observations on ROS ability of inducing cell senescence through novel mechanisms that underpin aging processes. Particular emphasis is addressed to the novel mechanisms of ROS involvement in epigenetic regulation of cell senescence and aging, with the aim to individuate specific pathways, which might promote healthy lifespan and improve aging

    Unexpected Absence of Skeletal Responses to Dietary Magnesium Depletion: Basis for Future Perspectives?

    Get PDF
    It's known that a magnesium (Mg)-deficient diet is associated with an increased risk of osteoporosis. The aim of this work is to investigate, by a histological approach, the effects of a Mg-deprived diet on the bone of 8-weeks-old C57BL/6J male mice. Treated and control mice were supplied with a Mg-deprived or normal diet for 8 weeks, respectively. Body weight, serum Mg concentration, expression of kidney magnesiotropic genes, and histomorphometry on L5 vertebrae, femurs, and tibiae were evaluated. Body weight gain and serum Mg concentration were significantly reduced, while a trend toward increase was found in gene expression in mice receiving the Mg-deficient diet, suggesting the onset of an adaptive response to Mg depletion. Histomorphometric parameters on the amount of trabecular and cortical bone, number of osteoclasts, and thickness of the growth plate in femoral distal and tibial proximal metaphyses did not differ between groups; these findings partially differ from most data present in the literature showing that animals fed a Mg-deprived diet develop bone loss and may be only in part explained by differences among the experimental protocols. However, the unexpected findings we recorded on bones could be attributed to genetic differences that may have developed after multiple generations of inbreeding

    Green tea catechins suppress the DNA synthesis marker MCM7 in the TRAMP model of prostate cancer.

    Get PDF
    Green tea catechins (GTCs) exert chemopreventive effects in many cancer models. Several studies implicate the DNA synthesis marker minichromosome maintenance protein 7 (MCM7) in prostate cancer progression, growth and invasion; representing a novel therapeutic target. In this study, we investigated the effect of GTCs on MCM7 expression in the transgenic adenocarcinoma mouse prostate model (TRAMP). DNA microarray, immunohistochemistry and western blot analysis showed that GTCs significantly suppressed MCM7 in the TRAMP mice treated with GTCs. Our study indicates that the cellular DNA replication factor MCM7 is involved in prostate cancer (CaP) and MCM7 gene expression was reduced by GTCs. Together, these results suggest a possible role of GTCs in CaP chemoprevention in which MCM7 plays a critical role

    Depletion of Trichoplein (TpMs) Causes Chromosome Mis-Segregation, DNA Damage and Chromosome Instability in Cancer Cells

    Get PDF
    Mitotic perturbations frequently lead to chromosome mis-segregation that generates genome instability, thereby triggering tumor onset and/or progression. Error-free mitosis depends on fidelity-monitoring systems that ensure the temporal and spatial coordination of chromosome segregation. Recent investigations are focused on mitotic DNA damage response (DDR) and chromosome mis-segregations with the aim of developing more efficient anti-cancer therapies. We previously demonstrated that trichoplein keratin filament binding protein (TpMs) exhibits hallmarks of a tumor suppressor gene in cancer-derived cells and human tumors. Here, we show that silencing of TpMs expression results in chromosome mis-segregation, DNA damage and chromosomal instability. TpMs interacts with Mad2, and TpMs depletion results in decreased levels of Mad2 and Cyclin B1 proteins. All the genetic alterations observed are consistent with both defective activation of the spindle assembly checkpoint and mitotic progression. Thus, low levels of TpMs found in certain human tumors may contribute to cellular transformation by promoting genomic instability

    Anticancer activity of green tea polyphenols in prostate gland

    Get PDF
    Numerous evidences from prevention studies in humans, support the existence of an association between green tea polyphenols consumption and a reduced cancer risk. Prostate cancer is one of the most frequently diagnosed male neoplasia in the Western countries, which is in agreement with this gland being particularly vulnerable to oxidative stress processes, often associated with tumorigenesis. Tea polyphenols have been extensively studied in cell culture and animal models where they inhibited tumor onset and progression. Prostate cancer appears a suitable target for primary prevention care, since it grows slowly, before symptoms arise, thus offering a relatively long time period for therapeutic interventions. It is, in fact, usually diagnosed in men 50-year-old or older, when even a modest delay in progression of the disease could significantly improve the patients quality of life. Although epidemiological studies have not yet yielded conclusive results on the chemopreventive and anticancer effect of tea polyphenols, there is an increasing trend to employ these substances as conservative management for patients diagnosed with less advanced prostate cancer. Here, we intend to review the most recent observations relating tea polyphenols to human prostate cancer risk, in an attempt to outline better their potential employment for preventing prostate cancer

    Prognostic role of clusterin in resected adenocarcinomas of the lung

    Get PDF
    Rationale Clusterin expression may change in various human malignancies, including lung cancer. Patients with resectable non-small cell lung cancer (NSCLC), including adenocarcinoma, have a poor prognosis, with a relapse rate of 30\u201350% within 5 years. Nuclear factor kB (Nf-kB) is an intracellular protein involved in the initiation and progression of several human cancers, including the lung. Objectives We investigate the role of clusterin and Nf-kB expression in predicting the prognosis of patients with early-stage surgically resected adenocarcinoma of the lung. Findings The level of clusterin gradually decreased from well-differentiated to poorly differentiated adenocarcinomas. Clusterin expression was significantly higher in patients with low-grade adenocarcinoma, in early-stage disease and in women. Clusterin expression was inversely related to relapse and survival in both univariate and multivariate analyses. Finally, we observed an inverse correlation between Nf-kB and clusterin. Conclusions Clusterin expression represents an independent prognostic factor in surgically resected lung adenocarcinoma and was proven to be a useful biomarker for fewer relapses and longer survival in patients in the early stage of disease. The inverse correlation between Nf-kB and clusterin expression confirm the previously reported role of clusterin as potent down regulator of Nf-kB

    Green tea catechins suppress the DNA synthesis marker MCM7 in the TRAMP model of prostate cancer

    Get PDF
    Green tea catechins (GTCs) exert chemopreventive effects in many cancer models. Several studies implicate the DNA synthesis marker minichromosome maintenance protein 7 (MCM7) in prostate cancer progression, growth and invasion; representing a novel therapeutic target. In this study, we investigated the effect of GTCs on MCM7 expression in the transgenic adenocarcinoma mouse prostate model (TRAMP). DNA microarray, immunohistochemistry and Western blot analysis showed that GTCs significantly suppressed MCM7 in the TRAMP mice treated with GTCs. Our study indicates that the cellular DNA replication factor MCM7 is involved in prostate cancer (CaP) and MCM7 gene expression was reduced by GTCs. Together, these results suggest a possible role of GTCs in CaP chemoprevention in which MCM7 plays a critical role
    corecore