111 research outputs found

    The double nucleus galaxies Mkn 423 and Mkn 739

    Get PDF
    Long slit spectroscopy and imaging of Mkn 423 and Mkn 739 were performed on the 2.2 m and 3.5 m telescopes of the Calar Alto Observatory using both change coupled device (CCD) and photographic detectors. Low and medium resolution spectra (1.8A, 3.5A, 6.0A) together with V images have permitted the demonstration of the merging nature of Mkn 423 and the double structure of the narrow line region (NLR) of its Seyfert component. This last feature has been found also in the NLR of the Seyfert component of Mkn 739, a double system the two components of which are counterrotating

    The intrinsic Baldwin effect in broad Balmer lines of six long-term monitored AGNs

    Full text link
    We investigate the intrinsic Baldwin effect (Beff) of the broad Hα\alpha and Hβ\beta emission lines for six Type 1 active galactic nuclei (AGNs) with different broad line characteristics: two Seyfert 1 (NGC 4151 and NGC 5548), two AGNs with double-peaked broad line profiles (3C 390.3 and Arp 102B), one narrow line Seyfert 1 (Ark 564), and one high-luminosity quasar with highly red asymmetric broad line profiles (E1821+643). We found that a significant intrinsic Beff was present in all Type 1 AGNs in our sample. Moreover, we do not see strong difference in intrinsic Beff slopes in different types of AGNs which probably have different physical properties, such as inclination, broad line region geometry, or accretion rate. Additionally, we found that the intrinsic Beff was not connected with the global one, which, instead, could not be detected in the broad Hα\alpha or Hβ\beta emission lines. In the case of NGC 4151, the detected variation of the Beff slope could be due to the change in the site of line formation in the BLR. Finally, the intrinsic Beff might be caused by the additional optical continuum component that is not part of the ionization continuum.Comment: 12 pages, 8 figures, Accepted for publication in A&

    Relativistic plasmas in AGN jets - From synchrotron radiation to Îł\gamma-ray emission

    Full text link
    Relativistic jets of plasma are a key ingredient of many types of Active Galactic Nuclei (AGN). Today we know that AGNs are powered by the accretion of inter stellar material into the gravitational field of a Super Massive Black Hole and that this process can release as much power as a whole galaxy, like the Milky Way, from a region that is comparable to the Solar System in size. Depending on the properties of the central energy source, a large fraction of this power can be involved in the acceleration of magnetized plasmas at relativistic speeds, to form large scale jets. The presence of jets affects the spectrum of AGNs through the emission of synchrotron radiation and Inverse Compton scattering of low energy photons, thus leading to a prominent non-thermal spectrum, some times extending from radio frequencies all the way up to Îł\gamma-ray energies. Here we review some characteristic processes of radiation emission in AGN jets, which lead to the emission of photons in the radio, optical, X-ray and Îł\gamma-ray bands, and we present the results of a spectroscopic campaign of optical counterparts. We discuss our observations and their connection with Îł\gamma-ray properties in a scenario that traces the role of relativistic jets in different classes of AGNs, detected both in the local as well as in the remote Universe.Comment: 11 pages, 5 figures (3 in color), proceedings of the XXVIII School on Physics of Ionized Gases (SPIG), accepted for publication on the European Journal of Physics

    Subtyping demoralization in the medically ill by cluster analysis

    Get PDF
    Background and Objectives: There is increasing interest in the issue of demoralization, particularly in the setting of medical disease. The aim of this investigation was to use both DSM-IV comorbidity and the Diagnostic Criteria for Psychosomatic Research (DCPR) in order to characterize demoralization in the medically ill. Methods: 1700 patients were recruited from 8 medical centers in the Italian Health System and 1560 agreed to participate. They all underwent a cross-sectional assessment with DSM-IV and DCPR structured interviews. 373 patients (23.9%) received a diagnosis of demoralization. Data were submitted to cluster analysis. Results: Four clusters were identified: demoralization and comorbid depression; demoralization and comorbid somatoform/adjustment disorders; demoralization and comorbid anxiety; demoralization without any comorbid DSM disorder. The first cluster included 27.6% of the total sample and was characterized by the presence of DSM-IV mood disorders (mainly major depressive disorder). The second cluster had 18.2% of the cases and contained both DSM-IV somatoform (particularly, undifferentiated somatoform disorder and hypochondriasis) and adjustment disorders. In the third cluster (24.7%), DSM-IV anxiety disorders in comorbidity with demoralization were predominant (particularly, generalized anxiety disorder, agoraphobia, panic disorder and obsessive-compulsive disorder). The fourth cluster had 29.5% of the patients and was characterized by the absence of any DSM-IV comorbid disorder. Conclusions: The findings indicate the need of expanding clinical assessment in the medically ill to include the various manifestations of demoralization as encompassed by the DCPR. Subtyping demoralization may yield improved targets for psychosomatic research and treatment trials

    Models of emission line profiles and spectral energy distributions to characterize the multi-frequency properties of active galactic nuclei

    Full text link
    The spectra of Active Galactic Nuclei (AGNs) are often characterized by a wealth of emission lines with different profiles and intensity ratios that led to a complicated classification. Their electro-magnetic radiation spans more than 10 orders of magnitude in frequency. In spite of the differences between various classes, the origin of their activity is attributed to a combination of emitting components, surrounding an accreting Super Massive Black Hole, in the so called Unified Model. Currently, the execution of sky surveys, with instruments operating at various frequencies, provides the possibility to detect and to investigate the properties of AGNs on very large statistical samples. Thanks to the spectroscopic surveys that allow investigation of many objects, we have the opportunity to place new constraints on the nature and evolution of AGNs. In this contribution we present the results obtained by working on multi-frequency data and we discuss their relations with the available optical spectra. We compare our findings with the AGN Unified Model predictions, and we present a revised technique to select AGNs of different types from other line emitting objects. We discuss the multi-frequency properties in terms of the innermost structures of the sources.Comment: 11 pages, 4 figures. Proceedings of the XI Serbian Conference on Spectral Line Shapes in Astrophysics. Accepted for publication on Atom

    SN 1995ah-the first supernova observed in a Blue Compact Dwarf galaxy

    Get PDF
    We present the properties of the supernova SN 1995ah discovered in a Blue Compact Dwarf galaxy (BCD) around 10 days after the maximum. This is the first supernova event observed in a BCD. The photometric and spectroscopic data suggest that SN 1995ah is a Type II supernova and could belong to the rare Bright SNII Linear subclass, for which ~=-18.9+-0.6 at maximum light.Comment: 6 pages, late

    An orientation-based unification of young jetted AGN: the case of 3C 286

    Get PDF
    In recent years, the old paradigm according to which only high-mass black holes can launch powerful relativistic jets in active galactic nuclei (AGN) has begun to crumble. The discovery of γ\gamma-rays coming from narrow-line Seyfert 1 galaxies (NLS1s), usually considered young and growing AGN harboring a central black hole with mass typically lower than 108^8 M⊙_\odot, indicated that also these low-mass AGN can produce powerful relativistic jets. The search for parent population of γ\gamma-ray emitting NLS1s revealed their connection with compact steep-spectrum sources (CSS). In this proceeding we present a review of the current knowledge of these sources, we present the new important case of 3C 286, classified here for the fist time as NLS1, and we finally provide a tentative orientation based unification of NLS1s and CSS sources.Comment: 12 pages, 3 figures. Proceeding of the conference "Quasars at all cosmic epochs", held in Padova, April 2-7, 2017, published on Frontiers in Astronomy and Space Science

    Parent population of flat-spectrum radio-loud narrow-line Seyfert 1 galaxies

    Get PDF
    Flat-spectrum radio-loud Narrow-Line Seyfert 1 galaxies (NLS1s) are a recently discovered class of Îł\gamma-ray emitting Active Galactic Nuclei (AGN), that exhibit some blazar-like properties which are explained with the presence of a relativistic jet viewed at small angles. When blazars are observed at larger angles they appear as radio-galaxies, and we expect to observe an analogue parent population for beamed NLS1s. However, the number of known NLS1s with the jet viewed at large angles is not enough. Therefore, we tried to understand the origin of this deficit. Current hypotheses about the nature of parent sources are steep-spectrum radio-loud NLS1s, radio-quiet NLS1s and disk-hosted radio-galaxies. To test these hypotheses we built three samples of candidate sources plus a control sample, and calculated their black hole mass and Eddington ratio using their optical spectra. We then performed a Kolmogorov-Smirnov statistical test to investigate the compatibility of our different samples with a beamed population. Our results indicate that, when the inclination angle increases, a beamed source appears as a steep-spectrum radio-loud NLS1, or possibly even as a disk-hosted radio-galaxy with low black hole mass and high Eddington ratio. Further investigations, involving larger complete samples and observations at radio frequency, are needed to understand the incidence of disk-hosted radio-galaxies in the parent population, and to assess whether radio-quiet NLS1s can play a role, as well.Comment: 12 pages, 6 figures, accepted for publication by Astronomy and Astrophysic

    Extended narrow-line region in Seyfert galaxies

    Full text link
    We present our recent results about the extended narrow-line region (ENLR) of two nearby Seyfert 2 galaxies (IC 5063 and NGC 7212) obtained by modelling the observed line profiles and spectra with composite models (photoionization+shocks) in the different regions surrounding the AGN. Then, we compare the Seyfert 2 ENLRs with the very extended one recently discovered in the narrow-line Seyfert 1 (NLS1) galaxy Mrk 783. We have found several evidences of interaction between the ISM of the galaxies and their radio jets, such as a) the contribution of shocks in ionizing the high velocity gas, b) the complex kinematics showed by the profile of the emission lines, c) the high fragmentation of matter, etc. The results suggest that the ENLR of IC 5063 have a hollow bi-conical shape, with one edge aligned to the galaxy disk, which may cause some kind of dependence on velocity of the ionization parameter. Regarding the Mrk 783 properties, it is found that the extension of the optical emission is almost twice the size of the radio one and it seems due to the AGN activity, although there is contamination by star formation around 12 arcsec from the nucleus. Diagnostic diagrams excluded the contribution of star formation in IC 5063 and NGC 7212, while the shock contribution was used to explain the spectra emitted by their high velocity gas.Comment: 9 pages, 2 figures, proceeding of the conference "Quasars at all cosmic epochs", accepted for publication in Front. Astron. Space Sci. - Milky Way and Galaxie

    Compact steep-spectrum sources as the parent population of flat-spectrum radio-loud NLS1s

    Get PDF
    Narrow-line Seyfert 1 galaxies (NLS1s) are an interesting subclass of active galactic nuclei (AGN), which tipically does not exhibit any strong radio emission. Seven percent of them, though, are radio-loud and often show a flat radio-spectrum (F-NLS1s). This, along to the detection of Îł\gamma-ray emission coming from them, is usually interpreted as a sign of a relativistic beamed jet oriented along the line of sight. An important aspect of these AGN that must be understood is the nature of their parent population, in other words how do they appear when observed under different angles. In the recent literature it has been proposed that a specific class of radio-galaxies, compact-steep sources (CSS) classified as high excitation radio galaxies (HERG), can represent the parent population of F-NLS1s. To test this hypothesis in a quantitative way,in this paper we analyzed the only two statistically complete samples of CSS/HERGs and F-NLS1s available in the literature. We derived the black hole mass and Eddington ratio distributions, and we built for the first time the radio luminosity function of F-NLS1s. Finally, we applied a relativistic beaming model to the luminosity function of CSS/HERGs, and compared the result with the observed function of F-NLS1s. We found that compact steep-spectrum sources are valid parent candidates and that F-NLS1s, when observed with a different inclination, might actually appear as CSS/HERGs.Comment: 9 pages, 5 figures, 4 tables. Accepted for publication in Astronomy & Astrophysic
    • …
    corecore