11 research outputs found

    Solvent-Driven Pā€“S vs Pā€“C Bond Formation from a Diplatinum(III) Complex and Sulfur-Based Anions

    Get PDF
    The outcome of the reaction of the PtĀ­(III),PtĀ­(III) complex [(C<sub>6</sub>F<sub>5</sub>)<sub>2</sub>Pt<sup>III</sup>(Ī¼-PPh<sub>2</sub>)<sub>2</sub>Pt<sup>III</sup>(C<sub>6</sub>F<sub>5</sub>)<sub>2</sub>]Ā­(<i>Ptā€“Pt</i>) (<b>1</b>) with the S-based anions thiophenoxide (PhS<sup>ā€“</sup>), ethyl xanthogenate (EtOCS<sub>2</sub><sup>ā€“</sup>), 2-mercaptopyrimidinate (pymS<sup>ā€“</sup>), and 2-mercaptopyridinate (pyS<sup>ā€“</sup>) was found to be dependent on the reaction solvent. The reactions carried out in acetone led to the formation of [N<sup>n</sup>Bu<sub>4</sub>]Ā­[(R<sub>F</sub>)<sub>2</sub>Pt<sup>II</sup>(Ī¼-PhS-PPh<sub>2</sub>)Ā­(Ī¼-PPh<sub>2</sub>)Ā­Pt<sup>II</sup>(R<sub>F</sub>)<sub>2</sub>] (<b>2</b>), [N<sup>n</sup>Bu<sub>4</sub>]Ā­[(R<sub>F</sub>)<sub>2</sub>Pt<sup>II</sup>(Ī¼-EtOCS<sub>2</sub>-PPh<sub>2</sub>)Ā­(Ī¼-PPh<sub>2</sub>)Ā­Pt<sup>II</sup>(R<sub>F</sub>)<sub>2</sub>] (<b>3</b>), [N<sup>n</sup>Bu<sub>4</sub>]Ā­[(R<sub>F</sub>)<sub>2</sub>Pt<sup>II</sup>(Ī¼-pymS-PPh<sub>2</sub>)Ā­(Ī¼-PPh<sub>2</sub>)Ā­Pt<sup>II</sup>(R<sub>F</sub>)<sub>2</sub>] (<b>4</b>), and [N<sup>n</sup>Bu<sub>4</sub>]Ā­[(R<sub>F</sub>)<sub>2</sub>Pt<sup>II</sup>(Ī¼-pySā€“PPh<sub>2</sub>)Ā­(Ī¼-PPh<sub>2</sub>)Ā­Pt<sup>II</sup>(R<sub>F</sub>)<sub>2</sub>] (<b>5</b>), respectively (R<sub>F</sub> = C<sub>6</sub>F<sub>5</sub>). Complexes <b>2</b>ā€“<b>5</b> display new Ph<sub>2</sub>PĀ­(SL) ligands exhibiting a Īŗ<sup>2</sup>-<i>P</i>,<i>S</i> bridging coordination mode, which is derived from a reductive elimination of a PPh<sub>2</sub> group and the S-based anion. Carrying out the reaction in dichloromethane afforded, in the cases of EtOCS<sub>2</sub><sup>ā€“</sup> and pymS<sup>ā€“</sup>, the monobridged complexes [N<sup>n</sup>Bu<sub>4</sub>]Ā­[(PPh<sub>2</sub>R<sub>F</sub>)Ā­(R<sub>F</sub>)<sub>2</sub>Pt<sup>II</sup>(Ī¼-PPh<sub>2</sub>)Ā­Pt<sup>II</sup>(EtOCS<sub>2</sub>)Ā­(R<sub>F</sub>)] (<b>6</b>) and [N<sup>n</sup>Bu<sub>4</sub>]Ā­[(PPh<sub>2</sub>R<sub>F</sub>)Ā­(R<sub>F</sub>)<sub>2</sub>Pt<sup>II</sup>(Ī¼-PPh<sub>2</sub>)Ā­Pt<sup>II</sup>(pymS)Ā­(R<sub>F</sub>)] (<b>7</b>), respectively, which are derived from reductive elimination of a PPh<sub>2</sub> group with a pentafluorophenyl ring. The reaction of <b>1</b> with EtOCS<sub>2</sub>K in acetonitrile yielded a mixture of <b>3</b> and <b>6</b> as a consequence of the concurrence of two processes: (a) the formation of <b>3</b> by a reaction that parallels the formation of <b>3</b> by <b>1</b> plus EtOCS<sub>2</sub>K in acetone and (b) the transformation of <b>1</b> into the neutral complex [(PPh<sub>2</sub>R<sub>F</sub>)Ā­(CH<sub>3</sub>CN)Ā­(R<sub>F</sub>)Ā­Pt<sup>II</sup>(Ī¼-PPh<sub>2</sub>)Ā­Pt<sup>II</sup>(R<sub>F</sub>)<sub>2</sub>(CH<sub>3</sub>CN)] (<b>8</b>), which, in turn, reacts with EtOCS<sub>2</sub>K to give <b>6</b>. The <b>1</b> to <b>8</b> transformation was found to be fully reversible. In fact, dissolving <b>8</b> in acetone or dichloromethane afforded pure <b>1</b> after solvent evaporation or crystallization with <i>n</i>-hexane. The XRD structures of <b>2</b>ā€“<b>4</b> and <b>6</b>ā€“<b>8</b> were determined, and the behavior in solution of the new complexes is discussed

    A Borane Platinum Complex Undergoing Reversible Hydride Migration in Solution

    No full text
    Reaction of [PtĀ­(Īŗ<sup>2</sup>-<i>C</i>,<i>N</i>-ppy)Ā­(dmso)Ā­Cl], <b>1</b> (Hppy = 2-phenylpyridine), with NaĀ­[H<sub>2</sub>BĀ­(mb)<sub>2</sub>] (Hmb = 2-mercapto-benzimidazole) smoothly afforded the complex {[(Īŗ<sup>3</sup>-<i>S</i>,<i>B</i>,<i>S</i>-HBĀ­(mb)<sub>2</sub>]Ā­PtĀ­(Īŗ<sup>2</sup>-<i>C</i>,<i>N</i>-ppy)Ā­H}, <b>2</b>, featuring a strong reverse-dative Pt ā†’ B Ļƒ interaction in the solid state. When dissolved in thf (or acetone) solution, <b>2</b> undergoes a reversible Ptā€“H bond activation, establishing an equilibrium between the hexacoordinated <b>2</b> and the tetracoordinate complex {[(Īŗ<sup>2</sup>-<i>S</i>,<i>S</i>-H<sub>2</sub>BĀ­(mb)<sub>2</sub>]Ā­PtĀ­(Īŗ<sup>2</sup>-<i>C</i>,<i>N</i>-ppy)}, <b>3</b>, as ascertained by multinuclear NMR. Hydrolysis of the Bā€“N bond in <b>2</b>/<b>3</b> resulted ultimately in the formation of a dimeric half-lantern platinumĀ­(II,II) complex [{PtĀ­(Īŗ<sup>2</sup>-<i>C</i>,<i>N</i>-ppy)Ā­(Ī¼<sub>2</sub>-Īŗ<sup>2</sup>-<i>N</i>,<i>S</i>-mb)}<sub>2</sub>], <b>4</b>. The SC-XRD structures of <b>2</b> and <b>4</b> are reported

    Synthesis and Reactivity of the Unsaturated Trinuclear Phosphanido Complex [(C<sub>6</sub>F<sub>5</sub>)<sub>2</sub>Pt(Ī¼-PPh<sub>2</sub>)<sub>2</sub>Pt(Ī¼-PPh<sub>2</sub>)<sub>2</sub>Pt(PPh<sub>3</sub>)]

    No full text
    The reaction of [NBu<sub>4</sub>]Ā­[(C<sub>6</sub>F<sub>5</sub>)<sub>2</sub>PtĀ­(Ī¼-PPh<sub>2</sub>)<sub>2</sub>PtĀ­(Ī¼-PPh<sub>2</sub>)<sub>2</sub>PtĀ­(<i>O</i>,<i>O</i>-acac)] (48 VEC) with [HPPh<sub>3</sub>]Ā­[ClO<sub>4</sub>] gives the 46 VEC unsaturated [(C<sub>6</sub>F<sub>5</sub>)<sub>2</sub>Pt<sup>1</sup>(Ī¼-PPh<sub>2</sub>)<sub>2</sub>Pt<sup>2</sup>(Ī¼-PPh<sub>2</sub>)<sub>2</sub>Pt<sup>3</sup>(PPh<sub>3</sub>)]Ā­(Pt<sup>2</sup>ā€“Pt<sup>3</sup>) (<b>1</b>), a trinuclear compound endowed with a Ptā€“Pt bond. This compound displays amphiphilic behavior and reacts easily with nucleophiles L, yielding the saturated complexes [(C<sub>6</sub>F<sub>5</sub>)<sub>2</sub>Pt<sup>II</sup>(Ī¼-PPh<sub>2</sub>)<sub>2</sub>Pt<sup>II</sup>(Ī¼-PPh<sub>2</sub>)<sub>2</sub>Pt<sup>II</sup>(PPh<sub>3</sub>)Ā­L] [L = PPh<sub>3</sub> (<b>2</b>), py (<b>3</b>)]. The reaction with the electrophile [AgĀ­(OClO<sub>3</sub>)Ā­PPh<sub>3</sub>] affords the adduct <b>1</b>Ā·AgPPh<sub>3</sub>, which evolves, even at low temperature, to a mixture in which [(C<sub>6</sub>F<sub>5</sub>)<sub>2</sub>Pt<sup>III</sup>(Ī¼-PPh<sub>2</sub>)<sub>2</sub>Pt<sup>III</sup>(Ī¼-PPh<sub>2</sub>)<sub>2</sub>Pt<sup>II</sup>(PPh<sub>3</sub>)<sub>2</sub>]<sup>2+</sup>(Pt<sup>III</sup>ā€“Pt<sup>III</sup>) and <b>2</b> (plus silver metal) are present. The nucleophilic nature of <b>1</b> is also demonstrated through its reaction with <i>cis</i>-[PtĀ­(C<sub>6</sub>F<sub>5</sub>)<sub>2</sub>(THF)<sub>2</sub>], which results in the formation of [Pt<sub>4</sub>(Ī¼-PPh<sub>2</sub>)<sub>4</sub>(C<sub>6</sub>F<sub>5</sub>)<sub>4</sub>(PPh<sub>3</sub>)] (<b>4</b>). The structure and NMR features indicate that <b>1</b> can be better considered as a Pt<sup>II</sup>ā€“Pt<sup>III</sup>ā€“Pt<sup>I</sup> complex instead of a Pt<sup>II</sup>ā€“Pt<sup>II</sup>ā€“Pt<sup>II</sup> derivative. Theoretical calculations (density functional theory) on similar model compounds are in agreement with the assigned oxidation states of the metal centers. The strong intermetallic interactions resulting in a Pt<sup>2</sup>ā€“Pt<sup>3</sup> metalā€“metal bond and the respective bonding mechanism were verified by employing a multitude of computational techniques (natural bond order analysis, the Laplacian of the electron density, and localized orbital locator profiles)

    Multinuclear Solid-State NMR and DFT Studies on Phosphanido-Bridged Diplatinum Complexes

    No full text
    Multinuclear (<sup>31</sup>P, <sup>195</sup>Pt, <sup>19</sup>F) solid-state NMR experiments on (<i>n</i>Bu<sub>4</sub>N)<sub>2</sub>[(C<sub>6</sub>F<sub>5</sub>)<sub>2</sub>PtĀ­(Ī¼-PPh<sub>2</sub>)<sub>2</sub>PtĀ­(C<sub>6</sub>F<sub>5</sub>)<sub>2</sub>] (<b>1</b>), [(C<sub>6</sub>F<sub>5</sub>)<sub>2</sub>PtĀ­(Ī¼-PPh<sub>2</sub>)<sub>2</sub>PtĀ­(C<sub>6</sub>F<sub>5</sub>)<sub>2</sub>]Ā­(<i>Ptā€“Pt</i>) (<b>2</b>), and <i>cis</i>-PtĀ­(C<sub>6</sub>F<sub>5</sub>)<sub>2</sub>(PHPh<sub>2</sub>)<sub>2</sub> (<b>3</b>) were carried out under cross-polarization/magic-angle-spinning conditions or with the cross-polarization/Carrā€“Purcell Meiboomā€“Gill pulse sequence. Analysis of the principal components of the <sup>31</sup>P and <sup>195</sup>Pt chemical shift (CS) tensors of <b>1</b> and <b>2</b> reveals that the variations observed comparing the isotropic chemical shifts of <b>1</b> and <b>2</b>, commonly referred to as ā€œring effectā€, are mainly due to changes in the principal components oriented along the direction perpendicular to the Pt<sub>2</sub>P<sub>2</sub> plane. DFT calculations of <sup>31</sup>P and <sup>195</sup>Pt CS tensors confirmed the tensor orientation proposed from experimental data and symmetry arguments and revealed that the different values of the isotropic shieldings stem from differences in the paramagnetic and spinā€“orbit contributions

    Synthesis and Reactivity of the Unsaturated Trinuclear Phosphanido Complex [(C<sub>6</sub>F<sub>5</sub>)<sub>2</sub>Pt(Ī¼-PPh<sub>2</sub>)<sub>2</sub>Pt(Ī¼-PPh<sub>2</sub>)<sub>2</sub>Pt(PPh<sub>3</sub>)]

    No full text
    The reaction of [NBu<sub>4</sub>]Ā­[(C<sub>6</sub>F<sub>5</sub>)<sub>2</sub>PtĀ­(Ī¼-PPh<sub>2</sub>)<sub>2</sub>PtĀ­(Ī¼-PPh<sub>2</sub>)<sub>2</sub>PtĀ­(<i>O</i>,<i>O</i>-acac)] (48 VEC) with [HPPh<sub>3</sub>]Ā­[ClO<sub>4</sub>] gives the 46 VEC unsaturated [(C<sub>6</sub>F<sub>5</sub>)<sub>2</sub>Pt<sup>1</sup>(Ī¼-PPh<sub>2</sub>)<sub>2</sub>Pt<sup>2</sup>(Ī¼-PPh<sub>2</sub>)<sub>2</sub>Pt<sup>3</sup>(PPh<sub>3</sub>)]Ā­(Pt<sup>2</sup>ā€“Pt<sup>3</sup>) (<b>1</b>), a trinuclear compound endowed with a Ptā€“Pt bond. This compound displays amphiphilic behavior and reacts easily with nucleophiles L, yielding the saturated complexes [(C<sub>6</sub>F<sub>5</sub>)<sub>2</sub>Pt<sup>II</sup>(Ī¼-PPh<sub>2</sub>)<sub>2</sub>Pt<sup>II</sup>(Ī¼-PPh<sub>2</sub>)<sub>2</sub>Pt<sup>II</sup>(PPh<sub>3</sub>)Ā­L] [L = PPh<sub>3</sub> (<b>2</b>), py (<b>3</b>)]. The reaction with the electrophile [AgĀ­(OClO<sub>3</sub>)Ā­PPh<sub>3</sub>] affords the adduct <b>1</b>Ā·AgPPh<sub>3</sub>, which evolves, even at low temperature, to a mixture in which [(C<sub>6</sub>F<sub>5</sub>)<sub>2</sub>Pt<sup>III</sup>(Ī¼-PPh<sub>2</sub>)<sub>2</sub>Pt<sup>III</sup>(Ī¼-PPh<sub>2</sub>)<sub>2</sub>Pt<sup>II</sup>(PPh<sub>3</sub>)<sub>2</sub>]<sup>2+</sup>(Pt<sup>III</sup>ā€“Pt<sup>III</sup>) and <b>2</b> (plus silver metal) are present. The nucleophilic nature of <b>1</b> is also demonstrated through its reaction with <i>cis</i>-[PtĀ­(C<sub>6</sub>F<sub>5</sub>)<sub>2</sub>(THF)<sub>2</sub>], which results in the formation of [Pt<sub>4</sub>(Ī¼-PPh<sub>2</sub>)<sub>4</sub>(C<sub>6</sub>F<sub>5</sub>)<sub>4</sub>(PPh<sub>3</sub>)] (<b>4</b>). The structure and NMR features indicate that <b>1</b> can be better considered as a Pt<sup>II</sup>ā€“Pt<sup>III</sup>ā€“Pt<sup>I</sup> complex instead of a Pt<sup>II</sup>ā€“Pt<sup>II</sup>ā€“Pt<sup>II</sup> derivative. Theoretical calculations (density functional theory) on similar model compounds are in agreement with the assigned oxidation states of the metal centers. The strong intermetallic interactions resulting in a Pt<sup>2</sup>ā€“Pt<sup>3</sup> metalā€“metal bond and the respective bonding mechanism were verified by employing a multitude of computational techniques (natural bond order analysis, the Laplacian of the electron density, and localized orbital locator profiles)

    Oxidatively Induced Pā€“O Bond Formation through Reductive Coupling between Phosphido and Acetylacetonate, 8ā€‘Hydroxyquinolinate, and Picolinate Groups

    No full text
    The dinuclear anionic complexes [NBu<sub>4</sub>]Ā­[(R<sub>F</sub>)<sub>2</sub>M<sup>II</sup>(Ī¼-PPh<sub>2</sub>)<sub>2</sub>Mā€²<sup>II</sup>(N<sup>āˆ§</sup>O)] (R<sub>F</sub> = C<sub>6</sub>F<sub>5</sub>. N<sup>āˆ§</sup>O = 8-hydroxyquinolinate, hq; M = Mā€² = Pt <b>1</b>; Pd <b>2</b>; M = Pt, Mā€² = Pd, <b>3</b>. N<sup>āˆ§</sup>O = <i>o</i>-picolinate, pic; M = Pt, Mā€² = Pt, <b>4</b>; Pd, <b>5</b>) are synthesized from the tetranuclear [NBu<sub>4</sub>]<sub>2</sub>[{(R<sub>F</sub>)<sub>2</sub>PtĀ­(Ī¼-PPh<sub>2</sub>)<sub>2</sub>MĀ­(Ī¼-Cl)}<sub>2</sub>] by the elimination of the bridging Cl as AgCl in acetone, and coordination of the corresponding <i>N</i>,<i>O</i>-donor ligand (<b>1</b>, <b>4</b>, and <b>5</b>) or connecting the fragments ā€œ<i>cis</i>-[(R<sub>F</sub>)<sub>2</sub>MĀ­(Ī¼-PPh<sub>2</sub>)<sub>2</sub>]<sup>2ā€“</sup>ā€ and ā€œMā€²(N<sup>āˆ§</sup>O)ā€ (<b>2</b> and <b>3</b>). The electrochemical oxidation of the anionic complexes <b>1</b>ā€“<b>5</b> occurring under HRMSĀ­(+) conditions gave the cations [(R<sub>F</sub>)<sub>2</sub>MĀ­(Ī¼-PPh<sub>2</sub>)<sub>2</sub>Mā€²(N<sup>āˆ§</sup>O)]<sup>+</sup>, presumably endowed with a MĀ­(III),Mā€²(III) core. The oxidative addition of I<sub>2</sub> to the 8-hydroxyquinolinate complexes <b>1</b>ā€“<b>3</b> triggers a reductive coupling between a PPh<sub>2</sub> bridging ligand and the <i>N</i>,<i>O</i>-donor chelate ligand with formation of a Pā€“O bond and ends up in complexes of platinumĀ­(II) or palladiumĀ­(II) of formula [(R<sub>F</sub>)<sub>2</sub>M<sup>II</sup>(Ī¼-I)Ā­(Ī¼-PPh<sub>2</sub>)Ā­Mā€²<sup>II</sup>(<i>P</i>,<i>N</i>-PPh<sub>2</sub>hq)], M = Mā€² = Pt <b>7</b>, Pd <b>8</b>; M = Pt, Mā€² = Pd, <b>9</b>. Complexes <b>7</b>ā€“<b>9</b> show a new Ph<sub>2</sub>P-OC<sub>9</sub>H<sub>6</sub>N (Ph<sub>2</sub>P-hq) ligand bonded to the metal center in a <i>P</i>,<i>N</i>-chelate mode. Analogously, the addition of I<sub>2</sub> to solutions of the <i>o</i>-picolinate complexes <b>4</b> and <b>5</b> causes the reductive coupling between a PPh<sub>2</sub> bridging ligand and the starting <i>N</i>,<i>O</i>-donor chelate ligand with formation of a Pā€“O bond, forming Ph<sub>2</sub>P-OC<sub>6</sub>H<sub>4</sub>NO (Ph<sub>2</sub>P-pic). In these cases, the isolated derivatives [NBu<sub>4</sub>]Ā­[(Ph<sub>2</sub>P-pic)Ā­(R<sub>F</sub>)Ā­Pt<sup>II</sup>(Ī¼-I)Ā­(Ī¼-PPh<sub>2</sub>)Ā­M<sup>II</sup>(R<sub>F</sub>)Ā­I] (M = Pt <b>10</b>, Pd <b>11</b>) are anionic, as a consequence of the coordination of the resulting new phosphane ligand (Ph<sub>2</sub>P-pic) as monodentate <i>P</i>-donor, and a terminal iodo group to the M atom. The oxidative addition of I<sub>2</sub> to [NBu<sub>4</sub>]Ā­[(R<sub>F</sub>)<sub>2</sub>Pt<sup>II</sup>(Ī¼-PPh<sub>2</sub>)<sub>2</sub>Pt<sup>II</sup>(acac)] (<b>6</b>) (acac = acetylacetonate) also results in a reductive coupling between the diphenylphosphanido and the acetylacetonate ligand with formation of a Pā€“O bond and synthesis of the complex [NBu<sub>4</sub>]Ā­[(R<sub>F</sub>)<sub>2</sub>Pt<sup>II</sup>(Ī¼-I)Ā­(Ī¼-PPh<sub>2</sub>)Ā­Pt<sup>II</sup>(Ph<sub>2</sub>P-acac)Ā­I] (<b>12</b>). The transformations of the starting complexes into the products containing the Pā€“O ligands passes through mixed valence MĀ­(II),Mā€²(IV) intermediates which were detected, for M = Mā€² = Pt, by spectroscopic and spectrometric measurements

    Sulfur-Assisted Phenyl Migration from Phosphorus to Platinum in PtW<sub>2</sub> and PtMo<sub>2</sub> Clusters Containing Thioether-Functionalized Short-Bite Ligands of the Bis(diphenylphosphanyl)amine-Type

    No full text
    The reactivity of dichloroplatinumĀ­(II) complexes containing thioether-functionalized bisĀ­(diphenylĀ­phosphanyl)Ā­amines of formula (Ph<sub>2</sub>P)<sub>2</sub>NĀ­(CH<sub>2</sub>)<sub>2</sub>SR (R = (CH<sub>2</sub>)<sub>5</sub>CH<sub>3</sub>, CH<sub>2</sub>Ph) toward group 6 carbonylmetalates NaĀ­[MĀ­(CO)<sub>3</sub>Cp] (M = Mo or W, Cp = cyclopentadienyl) was explored. Reactions with two or more equivalents of NaĀ­[MĀ­(CO)<sub>3</sub>Cp] (M = Mo or W) afforded the trinuclear complexes of general formula [PtPhĀ­{MĀ­(CO)<sub>3</sub>Cp}Ā­{Ī¼-<i>P</i>(Ph)Ā­NĀ­(CH<sub>2</sub>CH<sub>2</sub><i>S</i>R)Ā­(<i>P</i>Ph<sub>2</sub>)-Īŗ<sup>3</sup><i>P</i>,<i>P</i>,<i>S</i>}Ā­MĀ­(CO)<sub>2</sub>Cp] (<b>3</b> M = Mo, R = (CH<sub>2</sub>)<sub>5</sub>CH<sub>3</sub>; <b>4</b> M = Mo, R = CH<sub>2</sub>Ph; <b>9</b> M = W, R = (CH<sub>2</sub>)<sub>5</sub>CH<sub>3</sub>; <b>10</b> M = W, R = CH<sub>2</sub>Ph), the structure of which consists of a six-membered platinacycle condensed with a four-membered Mā€“Pā€“Nā€“P cycle, together with small amounts of isomeric PtM<sub>2</sub> clusters [PtM<sub>2</sub>(CO)<sub>5</sub>Cp<sub>2</sub>Ā­{(Ph<sub>2</sub>P)<sub>2</sub>NĀ­(CH<sub>2</sub>CH<sub>2</sub>SR)-Īŗ<sup>2</sup><i>P</i>,<i>P</i>}] (<b>5</b> M = Mo, R = (CH<sub>2</sub>)<sub>5</sub>CH<sub>3</sub>; <b>6</b> M = Mo, R = CH<sub>2</sub>Ph; <b>11</b> M = W, R = (CH<sub>2</sub>)<sub>5</sub>CH<sub>3</sub>; <b>12</b> M = W, R = CH<sub>2</sub>Ph) in which the ligand (Ph<sub>2</sub>P)<sub>2</sub>NR solely chelates the Pt atom or bridges an Mā€“Pt bond as in [PtM<sub>2</sub>(CO)<sub>5</sub>Cp<sub>2</sub>Ā­{Ī¼-(Ph<sub>2</sub>P)<sub>2</sub>NĀ­(CH<sub>2</sub>CH<sub>2</sub>SR)-Īŗ<sup>2</sup><i>P</i>,<i>P</i>}] (<b>7</b> M = Mo, R = (CH<sub>2</sub>)<sub>5</sub>CH<sub>3</sub>; <b>8</b> M = Mo, R = CH<sub>2</sub>Ph; <b>13</b> M = W, R = (CH<sub>2</sub>)<sub>5</sub>CH<sub>3</sub>; <b>14</b> M = W, R = CH<sub>2</sub>Ph). The synthesis of the trinuclear complexes <b>3</b>, <b>4</b>, <b>9</b>, and <b>10</b> entails an unexpected P-phenyl bond cleavage reaction and phenyl migration onto Pt. When only 1 equiv of NaĀ­[MĀ­(CO)<sub>3</sub>Cp] (M = Mo or W) was used, the heterodinuclear products of monosubstitution [PtClĀ­{MĀ­(CO)<sub>3</sub>Cp}Ā­{Ph<sub>2</sub>PNĀ­(R)Ā­PPh<sub>2</sub>-<i>P</i>,<i>P</i>}] (<b>15</b> M = Mo, R = (CH<sub>2</sub>)<sub>5</sub>CH<sub>3</sub>; <b>16</b> M = Mo, R = CH<sub>2</sub>Ph; <b>17</b> M = W, R = (CH<sub>2</sub>)<sub>5</sub>CH<sub>3</sub>; <b>18</b> M = W, R = CH<sub>2</sub>Ph) were obtained, which are the precursors to the bicyclic products <b>3</b>, <b>4</b>, <b>9</b>, and <b>10</b>, respectively. Density functional calculations were performed to study the thermodynamics of the formation of all the new complexes, to evaluate the relative stabilities of the isomeric chelated and bridged forms, and to trace the mechanism of formation of the phosphanido-bridged products <b>3</b>, <b>4</b>, <b>9</b>, and <b>10</b>. It was concluded that PtĀ­(II) complexes containing a <i>thioether</i>-functionalized short-bite ligand, [PtCl<sub>2</sub>{Ph<sub>2</sub>PĀ­NĀ­(R)Ā­PPh<sub>2</sub>}], react with NaĀ­[MĀ­(CO)<sub>3</sub>Cp] to yield first heterodinuclear Ptā€“M and then heterotrinuclear PtM<sub>2</sub> complexes resulting from the activation of a Pā€“C bond in one of the PPh<sub>2</sub> groups and phenyl migration to Pt. The critical role of an intramolecular thioether group was demonstrated

    Addition of Nucleophiles to Phosphanido Derivatives of Pt(III): Formation of Pā€“C, Pā€“N, and Pā€“O Bonds

    No full text
    The reactivity of the dinuclear platinumĀ­(III) derivative [(R<sub>F</sub>)<sub>2</sub>Pt<sup>III</sup>(Ī¼-PPh<sub>2</sub>)<sub>2</sub>Ā­Pt<sup>III</sup>(R<sub>F</sub>)<sub>2</sub>]<i>(Ptā€“Pt)</i> (R<sub>F</sub> = C<sub>6</sub>F<sub>5</sub>) (<b>1</b>) toward OH<sup>ā€“</sup>, N<sub>3</sub><sup>ā€“</sup>, and NCO<sup>ā€“</sup> was studied. The coordination of these nucleophiles to a metal center evolves with reductive coupling or reductive elimination between a bridging diphenylphosphanido group and OH<sup>ā€“</sup>, N<sub>3</sub><sup>ā€“</sup>, and NCO<sup>ā€“</sup> or C<sub>6</sub>F<sub>5</sub> groups and formation of Pā€“O, Pā€“N, or Pā€“C bonds. The addition of OH<sup>ā€“</sup> to <b>1</b> evolves with a reductive coupling with the incoming ligand, formation of a Pā€“O bond, and the synthesis of [NBu<sub>4</sub>]<sub>2</sub>[(R<sub>F</sub>)<sub>2</sub>Pt<sup>II</sup>(Ī¼-OPPh<sub>2</sub>)Ā­(Ī¼-PPh<sub>2</sub>)Ā­Pt<sup>II</sup>(R<sub>F</sub>)<sub>2</sub>] (<b>3</b>). The addition of N<sub>3</sub><sup>ā€“</sup> takes place through two ways: (a) formation of the Pā€“N bond and reductive elimination of PPh<sub>2</sub>N<sub>3</sub> yielding [NBu<sub>4</sub>]<sub>2</sub>[(R<sub>F</sub>)<sub>2</sub>Pt<sup>II</sup>(Ī¼-N<sub>3</sub>)Ā­(Ī¼-PPh<sub>2</sub>)Ā­Pt<sup>II</sup>(R<sub>F</sub>)<sub>2</sub>] (<b>4a</b>) and (b) formation of the Pā€“C bond and reductive coupling with one of the C<sub>6</sub>F<sub>5</sub> groups yielding [NBu<sub>4</sub>]Ā­[(R<sub>F</sub>)<sub>2</sub>Pt<sup>II</sup>(Ī¼-N<sub>3</sub>)Ā­(Ī¼-PPh<sub>2</sub>)Ā­Pt<sup>II</sup>(R<sub>F</sub>)Ā­(PPh<sub>2</sub>R<sub>F</sub>)] (<b>4b</b>). Analogous behavior was shown in the addition of NCO<sup>ā€“</sup> to <b>1</b> which afforded [NBu<sub>4</sub>]<sub>2</sub>[(R<sub>F</sub>)<sub>2</sub>Pt<sup>II</sup>(Ī¼-NCO)Ā­(Ī¼-PPh<sub>2</sub>)Ā­Pt<sup>II</sup>(R<sub>F</sub>)<sub>2</sub>] (<b>5a</b>) and [NBu<sub>4</sub>]Ā­[(R<sub>F</sub>)<sub>2</sub>Pt<sup>II</sup>(Ī¼-NCO)Ā­(Ī¼-PPh<sub>2</sub>)Ā­Pt<sup>II</sup>(R<sub>F</sub>)Ā­(PPh<sub>2</sub>R<sub>F</sub>)] (<b>5b</b>). In the reaction of the trinuclear complex [(R<sub>F</sub>)<sub>2</sub>Pt<sup>III</sup>(Ī¼-PPh<sub>2</sub>)<sub>2</sub>Pt<sup>III</sup>(Ī¼-PPh<sub>2</sub>)<sub>2</sub>Ā­Pt<sup>II</sup>(R<sub>F</sub>)<sub>2</sub>]<i>(Pt</i><sup><i>III</i></sup><i>ā€“Pt</i><sup><i>III</i></sup><i>)</i> (<b>2</b>) with OH<sup>ā€“</sup> or N<sub>3</sub><sup>ā€“</sup>, the coordination of the nucleophile takes place selectively at the central platinumĀ­(III) center, and the PPh<sub>2</sub>/OH<sup>ā€“</sup> or PPh<sub>2</sub>/N<sub>3</sub><sup>ā€“</sup> reductive coupling yields the trinuclear [NBu<sub>4</sub>]<sub>2</sub>[(R<sub>F</sub>)<sub>2</sub>Pt<sup>II</sup>(Ī¼-Ph<sub>2</sub>PO)Ā­(Ī¼-PPh<sub>2</sub>)Ā­Pt<sup>II</sup>(Ī¼-PPh<sub>2</sub>)<sub>2</sub>Pt<sup>II</sup>(R<sub>F</sub>)<sub>2</sub>] (<b>6</b>) and [NBu<sub>4</sub>]Ā­[(R<sub>F</sub>)<sub>2</sub>Pt<sup>1</sup>(Ī¼<sub>3</sub>-Ph<sub>2</sub>PNPPh<sub>2</sub>)Ā­(Ī¼-PPh<sub>2</sub>)Ā­Pt<sup>2</sup>(Ī¼-PPh<sub>2</sub>)Ā­Pt<sup>3</sup>(R<sub>F</sub>)<sub>2</sub>]<i>(Pt</i><sup><i>2</i></sup><i>ā€“Pt</i><sup><i>3</i></sup><i>)</i> (<b>7</b>). Complex <b>7</b> is fluxional in solution, and an equilibrium consisting of Ptā€“Pt bond migration was ascertained by <sup>31</sup>P EXSY experiments

    Formation of Pā€“C Bond through Reductive Coupling between Bridging Phosphido and Benzoquinolinate Groups. Isolation of Complexes of the Pt(II)/Pt(IV)/Pt(II) Sequence

    No full text
    The rational synthesis of dinuclear asymmetric phosphanido derivatives of palladium and platinumĀ­(II), [NBu<sub>4</sub>]Ā­[(R<sub>F</sub>)<sub>2</sub>MĀ­(Ī¼-PPh<sub>2</sub>)<sub>2</sub>Mā€²(Īŗ<sup>2</sup>,<i>N</i>,<i>C</i>-C<sub>13</sub>H<sub>8</sub>N)] (R<sub>F</sub> = C<sub>6</sub>F<sub>5</sub>; M = Mā€² = Pt, <b>1</b>; M = Pt, Mā€² = Pd, <b>2</b>; M = Pd, Mā€² = Pt, <b>3</b>; M = Mā€² = Pd, <b>4</b>), is described. Addition of I<sub>2</sub> to <b>1</b>ā€“<b>4</b> gives complexes [(R<sub>F</sub>)<sub>2</sub>M<sup>II</sup>(Ī¼-PPh<sub>2</sub>)Ā­(Ī¼-I)Ā­Pd<sup>II</sup>{PPh<sub>2</sub>(C<sub>13</sub>H<sub>8</sub>N)}] (M = Mā€² = Pt, <b>6</b>; M = Pt, Mā€² = Pd, <b>7</b>; M = Mā€² = Pd, <b>8</b>; M = Pd, Mā€² = Pt <b>10</b>) which contain the aminophosphane PPh<sub>2</sub>(C<sub>13</sub>H<sub>8</sub>N) ligand formed through a Ph<sub>2</sub>P/C<sup>āˆ§</sup>N reductive coupling on the mixed valence MĀ­(II)ā€“Mā€²(IV) [NBu<sub>4</sub>]Ā­[(R<sub>F</sub>)<sub>2</sub>M<sup>II</sup>(Ī¼-PPh<sub>2</sub>)<sub>2</sub>Mā€²<sup>IV</sup>(Īŗ<sup>2</sup>,<i>N</i>,<i>C</i>- C<sub>13</sub>H<sub>8</sub>N)Ā­I<sub>2</sub>] complexes, which were identified for M<sup>II</sup> = Pd, Mā€²<sup>IV</sup> = Pt (<b>9</b>), and isolated for M<sup>II</sup> = Pt, Mā€²<sup>IV</sup> = Pt (<b>5</b>). Complex <b>5</b> showed an unusual dynamic behavior consisting in the exchange of two phenyl groups bonded to different P atoms, as well as a ā€œthrough spaceā€ spinā€“spin coupling between <i>ortho</i>-F atoms of the pentafluorophenyl rings

    Dynamic Motions of Ligands around the Metal Centers Afford a Fidget Spinner-Type AIE Luminogen

    No full text
    A new type of aggregation-induced emission (AIE) luminogen containing a dimeric metal fragment and two or three phthalazine ligands is described, which shows dynamic motions of ligands around the metal centers in solution. Based on the variable-temperature and EXSY NMR spectroscopy data, X-ray crystallography structures, and computational results, three different pathways (i.e., reversible exchange with haptotropic shifts, circulation of ligands around the dimeric metal fragment, and walking on the spot of ligands on the metal centers) were considered for this dynamic behavior. Restriction of these dynamic processes in the aggregate forms of the compounds (in H2O/CH3CN solvent mixtures) contributes to their AIE. DFT calculations and NMR analysis showed that bright excited states for these molecules are not localized on isolated molecules, and the emission of them stemmed from Ļ€-dimers or Ļ€-oligomers. The morphologies and the mode of associations in the solvent mixtures were determined by using transmission electron microscopy (TEM) and concentration-dependent NMR spectroscopy. The computational results showed the presence of a conical intersection (CI) between the S0 and S1 excited state, which provides an accessible pathway for nonradiative decay in these systems
    corecore