Synthesis and Reactivity
of the Unsaturated Trinuclear Phosphanido Complex [(C<sub>6</sub>F<sub>5</sub>)<sub>2</sub>Pt(μ-PPh<sub>2</sub>)<sub>2</sub>Pt(μ-PPh<sub>2</sub>)<sub>2</sub>Pt(PPh<sub>3</sub>)]
- Publication date
- Publisher
Abstract
The reaction of [NBu<sub>4</sub>][(C<sub>6</sub>F<sub>5</sub>)<sub>2</sub>Pt(μ-PPh<sub>2</sub>)<sub>2</sub>Pt(μ-PPh<sub>2</sub>)<sub>2</sub>Pt(<i>O</i>,<i>O</i>-acac)]
(48 VEC) with [HPPh<sub>3</sub>][ClO<sub>4</sub>] gives the 46 VEC
unsaturated [(C<sub>6</sub>F<sub>5</sub>)<sub>2</sub>Pt<sup>1</sup>(μ-PPh<sub>2</sub>)<sub>2</sub>Pt<sup>2</sup>(μ-PPh<sub>2</sub>)<sub>2</sub>Pt<sup>3</sup>(PPh<sub>3</sub>)](Pt<sup>2</sup>–Pt<sup>3</sup>) (<b>1</b>), a trinuclear compound endowed
with a Pt–Pt bond. This compound displays amphiphilic behavior
and reacts easily with nucleophiles L, yielding the saturated complexes
[(C<sub>6</sub>F<sub>5</sub>)<sub>2</sub>Pt<sup>II</sup>(μ-PPh<sub>2</sub>)<sub>2</sub>Pt<sup>II</sup>(μ-PPh<sub>2</sub>)<sub>2</sub>Pt<sup>II</sup>(PPh<sub>3</sub>)L] [L = PPh<sub>3</sub> (<b>2</b>), py (<b>3</b>)]. The reaction with the electrophile
[Ag(OClO<sub>3</sub>)PPh<sub>3</sub>] affords the adduct <b>1</b>·AgPPh<sub>3</sub>, which evolves, even at low temperature,
to a mixture in which [(C<sub>6</sub>F<sub>5</sub>)<sub>2</sub>Pt<sup>III</sup>(μ-PPh<sub>2</sub>)<sub>2</sub>Pt<sup>III</sup>(μ-PPh<sub>2</sub>)<sub>2</sub>Pt<sup>II</sup>(PPh<sub>3</sub>)<sub>2</sub>]<sup>2+</sup>(Pt<sup>III</sup>–Pt<sup>III</sup>) and <b>2</b> (plus silver metal) are present. The nucleophilic nature of <b>1</b> is also demonstrated through its reaction with <i>cis</i>-[Pt(C<sub>6</sub>F<sub>5</sub>)<sub>2</sub>(THF)<sub>2</sub>], which
results in the formation of [Pt<sub>4</sub>(μ-PPh<sub>2</sub>)<sub>4</sub>(C<sub>6</sub>F<sub>5</sub>)<sub>4</sub>(PPh<sub>3</sub>)] (<b>4</b>). The structure and NMR features indicate that <b>1</b> can be better considered as a Pt<sup>II</sup>–Pt<sup>III</sup>–Pt<sup>I</sup> complex instead of a Pt<sup>II</sup>–Pt<sup>II</sup>–Pt<sup>II</sup> derivative. Theoretical
calculations (density functional theory) on similar model compounds
are in agreement with the assigned oxidation states of the metal centers.
The strong intermetallic interactions resulting in a Pt<sup>2</sup>–Pt<sup>3</sup> metal–metal bond and the respective
bonding mechanism were verified by employing a multitude of computational
techniques (natural bond order analysis, the Laplacian of the electron
density, and localized orbital locator profiles)