382 research outputs found

    Krill oil, vitamin D and Lactobacillus reuteri cooperate to reduce gut inflammation

    Get PDF
    Current research into original therapies to treat intestinal inflammation is focusing on no-drug therapies. KLD is a mixture of krill oil (KO), probiotic Lactobacillus reuteri (LR), and vitamin D (VitD3). The aim of this study was to assess in vitro and in vivo the potential cooperative effects of KLD in reducing gut inflammation. Colorectal adenocarcinoma cell lines, CACO2 and HT29, and C57BL/6 mice were used for in vitro and in vivo analyses, respectively. Cells were exposed to cytomix (interferon gamma + tumour necrosis factor alpha (TNF-a)) to induce inflammation or co-exposed to cytomix and KO, LR and VitD3 alone or to cytomix and KLD. Animals were treated for 7 days with dextran sodium sulphate (DSS) to induce colitis or with DSS and KLD. In vitro assays: F-actin expression was analysed by immunofluorescence; scratch test and trans-epithelial electric resistance test were performed to measure wound healing; adhesion/invasion assays of adhesive and invasive Escherichia coli (AIEC) bacteria were made; mRNA expression of TNF-α, interleukin (IL)-8 and vitamin D receptor (VDR) was detected by quantitative PCR. In vivo assays: body weight, clinical score, histological score and large intestine weight and length were estimated; mRNA expression of TNF-α, IL-1ß, IL-6, IL-10 by quantitative PCR; VDR expression was detected by quantitative PCR and immunohistochemistry. In vitro: KLD restores epithelial cell-cell adhesion and mucosal healing during inflammation, while decreases the adhesiveness and invasiveness of AIEC bacteria and TNF-α and IL-8 mRNA expression and increases VDR expression. In vivo: KLD significantly improves body weight, clinical score, histological score and large intestine length of mice with DSS-induced colitis and reduces TNF-α, IL-1ß and IL-6 mRNA levels, while increases IL-10 mRNA and VDR levels. KLD has significant effects on the intestinal mucosa, strongly decreasing inflammation, increasing epithelial restitution and reducing pathogenicity of harmful commensal bacteria

    Intermittent antegrade warm cardioplegia reduces oxidative stress and improves metabolism of the ischemic-reperfused human myocardium

    Get PDF
    AbstractThe aim of this study was to compare the effect of intermittent antegrade warm blood cardioplegia and intermittent antegrade cold blood cardioplegia on myocardial metabolism and free radical generation of the ischemic-reperfused human myocardium. Thirty patients undergoing mitral valve procedures were randomly allocated to two groups: group 1 (15 patients) received warm blood cardioplegia and group 2 (15 patients), cold blood cardioplegia. Myocardial metabolism was assessed before aortic clamping, 1 minute after crossclamp removal, and after 20 minutes of reperfusion, by collecting blood simultaneously from the radial artery and coronary sinus. All samples were analyzed for lactate, creatine kinase, reduced and oxidized glutathione, ascorbic acid, fluorescent products of lipid peroxidation, and leukocyte activation (elastase). In all patients, early reperfusion was associated with significant coronary sinus lactate release. In group 2, but not in group 1, significant coronary sinus release of reduced and oxidized glutathione, fluorescent products of lipid peroxidation, and creatine kinase was also found; moreover, arterial-coronary sinus difference of ascorbic acid content was increased only in group 2, suggesting a transmyocardial consumption of this antioxidant vitamin. After 20 minutes of reperfusion, coronary sinus lactate release was no longer present in group 1, whereas significant production was still evident in group 2. In this group, significant coronary sinus release of fluorescent products of lipoperoxidation and reduced and oxidized glutathione was also observed at this time. No significant release of elastase from the coronary sinus was noted in the two groups throughout the study. The left ventricular stroke work index measured at the end of the study indicated a better functional recovery in group 1 than in group 2. In conclusion, intermittent antegrade warm blood cardioplegia protects the myocardium from ischemia-reperfusion injury better than intermittent antegrade cold blood cardioplegia; this phenomenon may be partly due to the decreased tissue oxidant burden mediated by intermittent warm blood cardioplegia. (J THORAC CARDIOVASC SURG 1995;109:787-95

    Inherited photoreceptor degeneration causes the death of melanopsin-positive retinal ganglion cells and increases their coexpression of brn3a

    Get PDF
    Purpose: To study the population of intrinsically photosensitive retinal ganglion cells (melanopsin-expressing RGCs, m+RGCs) in P23H-1 rats, a rat model of inherited photoreceptor degeneration. Methods: At postnatal (P) times P30, P365, and P540, retinas from P23H dystrophic rats (line 1, rapid degeneration; and line 3, slow degeneration) and Sprague Dawley (SD) rats (control) were dissected as whole-mounts and immunodetected for melanopsin and/or Brn3a. The dendritic arborization of m+RGCs and the numbers of Brn3a+RGCs and m+RGCs were quantified and their retinal distribution and coexpression analyzed. Results: In SD rats, aging did not affect the population of Brn3a+RGCs or m+RGCs or the percentage that showed coexpression (0.27%). Young P23H-1 rats had a significantly lower number of Brn3a+RGCs and showed a further decline with age. The population of m+RGCs in young P23H-1 rats was similar to that found in SD rats and decreased by 22.6% and 28.2% at P365 and P540, respectively, similarly to the decrease of the Brn3a+RGCs. At these ages the m+RGCs showed a decrease of their dendritic arborization parameters, which was similar in both the P23H-1 and P23H-3 lines. The percentage of coexpression of Brn3a was, however, already significantly higher at P30 (3.31%) and increased significantly with age (10.65% at P540). Conclusions: Inherited photoreceptor degeneration was followed by secondary loss of Brn3a+RGCs and m+RGCs. Surviving m+RGCs showed decreased dendritic arborization parameters and increased coexpression of Brn3a and melanopsin, phenotypic and molecular changes that may represent an effort to resist degeneration and/or preferential survival of m+RGCs capable of synthesizing Brn3a

    Factors Affecting Blood Pressure Variability: Lessons Learned from Two Systematic Reviews of Randomized Controlled Trials

    Get PDF
    Systematic reviews can often reveal much more than the original objective of the work. The objectives of this retrospective analysis were to answer three basic questions about blood pressure variability: 1) Does blood pressure entry criterion have an effect on baseline blood pressure variability? 2) Do thiazide diuretics have a significant effect on blood pressure variability? and 3) Does systolic blood pressure vary to the same degree as diastolic blood pressure? This analysis of blood pressure variability is based on resting standardized research setting BP readings from two systematic reviews evaluating blood pressure lowering efficacy of thiazide diuretics from double blind randomized controlled trials in 33,611 patients with primary hypertension. The standard deviation reported in trials was the focus of the research and the unit of analysis. When a threshold systolic or diastolic blood pressure value is used to determine entry into a trial, baseline variability is significantly decreased, systolic from 14.0 to 9.3 mmHg and diastolic from 8.4 to 5.3 mmHg. Thiazides do not change BP variability as the standard deviation and coefficient of variation of systolic blood pressure and diastolic blood pressure did not differ between thiazide and placebo groups at end of treatment. The coefficient of variation of systolic blood pressure was significantly greater than the coefficient of variation of diastolic blood pressure. Entry criterion decreases the baseline blood pressure variability. Treatment with a thiazide diuretic does not affect blood pressure variability. Systolic blood pressure varies to a greater degree than diastolic blood pressure

    Tracing the retina to analyze the integrity and phagocytic capacity of the retinal pigment epithelium

    Get PDF
    We have developed a new technique to study the integrity, morphology and functionality of the retinal neurons and the retinal pigment epithelium (RPE). Young and old control albino (Sprague-Dawley) and pigmented (Piebald Virol Glaxo) rats, and dystrophic albino (P23H-1) and pigmented (Royal College of Surgeons) rats received a single intravitreal injection of 3% Fluorogold (FG) and their retinas were analyzed from 5 minutes to 30 days later. Retinas were imaged in vivo with SD-OCT and ex vivo in flat-mounts and in cross-sections. Fifteen minutes and 24 hours after intravitreal administration of FG retinal neurons and the RPE, but no glial cells, were labeled with FG-filled vesicles. The tracer reached the RPE 15 minutes after FG administration, and this labeling remained up to 30 days. Tracing for 15 minutes or 24 hours did not cause oxidative stress. Intraretinal tracing delineated the pathological retinal remodelling occurring in the dystrophic strains. The RPE of the P23H-1 strain was highly altered in aged animals, while the RPE of the RCS strain, which is unable to phagocytose, did not accumulate the tracer even at young ages when the retinal neural circuit is still preserved. In both dystrophic strains, the RPE cells were pleomorphic and polymegathic

    Misexpression of a chloroplast aspartyl protease leads to severe growth defects and alters carbohydrate metabolism in Arabidopsis

    Get PDF
    The crucial role of carbohydrate in plant growth and morphogenesis is widely recognized. In this study, we describe the characterization of nana, a dwarf Arabidopsis (Arabidopsis thaliana) mutant impaired in carbohydrate metabolism. We show that the nana dwarf phenotype was accompanied by altered leaf morphology and a delayed flowering time. Our genetic and molecular data indicate that the mutation in nana is due to a transfer DNA insertion in the promoter region of a gene encoding a chloroplast-located aspartyl protease that alters its pattern of expression. Overexpression of the gene (oxNANA) phenocopies the mutation. Both nana and oxNANA display alterations in carbohydrate content, and the extent of these changes varies depending on growth light intensity. In particular, in low light, soluble sugar levels are lower and do not show the daily fluctuations observed in wild-type plants. Moreover, nana and oxNANA are defective in the expression of some genes implicated in sugar metabolism and photosynthetic light harvesting. Interestingly, some chloroplast-encoded genes as well as genes whose products seem to be involved in retrograde signaling appear to be down-regulated. These findings suggest that the NANA aspartic protease has an important regulatory function in chloroplasts that not only influences photosynthetic carbon metabolism but also plastid and nuclear gene expression

    Analysis of the variability of nursing care by pathology in a sample of nine Belgian hospitals

    Get PDF
    info:eu-repo/semantics/published27th Patient Classification Systems International (PCSI) Working Conference, Montreal, Canada, October 201

    Predictors of Mortality and Cardiovascular Outcome at 6 Months after Hospitalization for COVID-19

    Get PDF
    Clinical outcome data of patients discharged after Coronavirus disease 2019 (COVID-19) are limited and no study has evaluated predictors of cardiovascular prognosis in this setting. Our aim was to assess short-term mortality and cardiovascular outcome after hospitalization for COVID-19. A prospective cohort of 296 consecutive patients discharged after COVID-19 from two Italian institutions during the first wave of the pandemic and followed up to 6 months was included. The primary endpoint was all-cause mortality. The co-primary endpoint was the incidence of the composite outcome of major adverse cardiac and cerebrovascular events (MACCE: cardiovascular death, myocardial infarction, stroke, pulmonary embolism, acute heart failure, or hospitalization for cardiovascular causes). The mean follow-up duration was 6 ± 2 months. The incidence of all-cause death was 4.7%. At multivariate analysis, age was the only independent predictor of mortality (aHR 1.08, 95% CI 1.01–1.16). MACCE occurred in 7.2% of patients. After adjustment, female sex (aHR 2.6, 95% CI 1.05–6.52), in-hospital acute heart failure during index hospitalization (aHR 3.45, 95% CI 1.19–10), and prevalent atrial fibrillation (aHR 3.05, 95% CI 1.13–8.24) significantly predicted the incident risk of MACCE. These findings may help to identify patients for whom a closer and more accurate surveillance after discharge for COVID-19 should be considered
    • …
    corecore