10,023 research outputs found

    Purine and pyrimidine antagonism in a pyrimidine-deficient mutant of Neurospora

    Get PDF
    The present study is concerned with the inhibition of growth of the pyrimidine-deficient Neurospora mutant, No. 1298, by the naturally occurring purine ribonucleotides and ribonucleosides. This experimentally produced strain, unlike the wild type, is unable to synthesize the pyrimidine ribonucleosides on a medium containing inorganic salts, carbohydrate, and biotin. Normal growth takes place, however, when the medium is supplemented with either cytidine or uridine or the corresponding nucleotides. It has been found that adenosine and adenosine-3-phosphate (yeast adenylic acid) inhibit the utilization of the pyrimidine compounds to a varying degree. An amount of adenine nucleoside which is sufficient to inhibit growth completely on the quantity of cytidine used has no inhibitory effect on an equivalent amount of uridine. The addition of an equimolar amount of uridine to a mixture of cytidine and adenosine in which no growth takes place results in the elimination of the antagonism. In contrast to the effect of adenosine and adenylic acid on this mutant strain of Neurospora, adenine shows no inhibitory properties at comparable concentrations. A similar inhibitory effect on the utilization of the pyrimidine nucleosides was found for guanosine and guanylic acid, but larger amounts of these compounds were required to produce inhibition under the same conditions. Guanine like adenine failed to cause inhibition at moderate concentrations

    Miniature mobile sensor platforms for condition monitoring of structures

    Get PDF
    In this paper, a wireless, multisensor inspection system for nondestructive evaluation (NDE) of materials is described. The sensor configuration enables two inspection modes-magnetic (flux leakage and eddy current) and noncontact ultrasound. Each is designed to function in a complementary manner, maximizing the potential for detection of both surface and internal defects. Particular emphasis is placed on the generic architecture of a novel, intelligent sensor platform, and its positioning on the structure under test. The sensor units are capable of wireless communication with a remote host computer, which controls manipulation and data interpretation. Results are presented in the form of automatic scans with different NDE sensors in a series of experiments on thin plate structures. To highlight the advantage of utilizing multiple inspection modalities, data fusion approaches are employed to combine data collected by complementary sensor systems. Fusion of data is shown to demonstrate the potential for improved inspection reliability

    Investigation of synthetic aperture methods in ultrasound surface imaging using elementary surface types

    Get PDF
    Synthetic aperture imaging methods have been employed widely in recent research in non-destructive testing (NDT), but uptake has been more limited in medical ultrasound imaging. Typically offering superior focussing power over more traditional phased array methods, these techniques have been employed in NDT applications to locate and characterise small defects within large samples, but have rarely been used to image surfaces. A desire to ultimately employ ultrasonic surface imaging for bone surface geometry measurement prior to surgical intervention motivates this research, and results are presented for initial laboratory trials of a surface reconstruction technique based on global thresholding of ultrasonic 3D point cloud data. In this study, representative geometry artefacts were imaged in the laboratory using two synthetic aperture techniques; the Total Focusing Method (TFM) and the Synthetic Aperture Focusing Technique (SAFT) employing full and narrow synthetic apertures, respectively. Three high precision metallic samples of known geometries (cuboid, sphere and cylinder) which featured a range of elementary surface primitives were imaged using a 5MHz, 128 element 1D phased array employing both SAFT and TFM approaches. The array was manipulated around the samples using a precision robotic positioning system, allowing for repeatable ultrasound derived 3D surface point clouds to be created. A global thresholding technique was then developed that allowed the extraction of the surface profiles, and these were compared with the known geometry samples to provide a quantitative measure of error of 3D surface reconstruction. The mean errors achieved with optimised SAFT imaging for the cuboidal, spherical and cylindrical samples were 1.3 mm, 2.9 mm and 2.0 mm respectively, while those for TFM imaging were 3.7 mm, 3.0 mm and 3.1 mm, respectively. These results were contrary to expectations given the higher information content associated with the TFM images. However, it was established that the reduced error associated with the SAFT technique was associated with significant reductions in side lobe levels of approximately 24dB in comparison to TFM imaging, although this came at the expense of reduced resolution and coverage

    Novel algorithms for 3D surface point cloud boundary detection and edge reconstruction

    Get PDF
    Tessellated surfaces generated from point clouds typically show inaccurate and jagged boundaries. This can lead to tolerance errors and problems such as machine judder if the model is used for ongoing manufacturing applications. This paper introduces a novel boundary point detection algorithm and spatial FFT-based filtering approach, which together allow for direct generation of low noise tessellated surfaces from point cloud data, which are not based on pre-defined threshold values. Existing detection techniques are optimized to detect points belonging to sharp edges and creases. The new algorithm is targeted at the detection of boundary points and it is able to do this better than the existing methods. The FFT-based edge reconstruction eliminates the problem of defining a specific polynomial function order for optimum polynomial curve fitting. The algorithms were tested to analyse the results and measure the execution time for point clouds generated from laser scanned measurements on a turbofan engine turbine blade with varying numbers of member points. The reconstructed edges fit the boundary points with an improvement factor of 4.7 over a standard polynomial fitting approach. Furthermore, through adding artificial noise it has been demonstrated that the detection algorithm is very robust for out-of-plane noise lower than 25% of the cloud resolution and it can produce satisfactory results when the noise is lower than 75%

    The Baryon Fractions and Mass-to-Light Ratios of Early-Type Galaxies

    Full text link
    We jointly model 22 early-type gravitational lens galaxies with stellar dynamical measurements using standard CDM halo models. The sample is inhomogeneous in both its mass distributions and the evolution of its stellar populations unless the true uncertainties are significantly larger than the reported measurement errors. In general, the individual systems cannot constrain halo models, in the sense that the data poorly constrains the stellar mass fraction of the halo. The ensemble of systems, however, strongly constrains the average stellar mass represented by the visible galaxies to 0.026±0.0060.026\pm0.006 of the halo mass if we neglect adiabatic compression, rising to 0.056±0.0110.056\pm0.011 of the halo mass if we include adiabatic compression. Both estimates are significantly smaller than the global baryon fraction, corresponding to a star formation efficiency for early-type galaxies of 1010%-30%. In the adiabatically compressed models, we find an average local B-band stellar mass-to-light ratio of (M/L)_0 = (7.2\pm0.5)(M_{\sun}/L_{\sun}) that evolves by dlog⁥(M/L)/dz=−0.72±0.08d\log(M/L)/dz = -0.72\pm0.08 per unit redshift. Adjusting the isotropy of the stellar orbits has little effect on the results. The adiabatically compressed models are strongly favored if we impose either local estimates of the mass-to-light ratios of early-type galaxies or the weak lensing measurements for the lens galaxies on 100 kpc scales as model constraints.Comment: 9 figure

    Recombinant factorVIII Fc fusion protein for the prevention and treatment of bleeding in children with severe hemophilia A

    Get PDF
    This work was supported by funding from Biogen, including funding for the editorial and writing support in the the development of this paper

    Quantum Films Adsorbed on Graphite: Third and Fourth Helium Layers

    Full text link
    Using a path-integral Monte Carlo method for simulating superfluid quantum films, we investigate helium layers adsorbed on a substrate consisting of graphite plus two solid helium layers. Our results for the promotion densities and the dependence of the superfluid density on coverage are in agreement with experiment. We can also explain certain features of the measured heat capacity as a function of temperature and coverage.Comment: 13 pages in the Phys. Rev. two-column format, 16 Figure

    Solving Tree Problems with Category Theory

    Full text link
    Artificial Intelligence (AI) has long pursued models, theories, and techniques to imbue machines with human-like general intelligence. Yet even the currently predominant data-driven approaches in AI seem to be lacking humans' unique ability to solve wide ranges of problems. This situation begs the question of the existence of principles that underlie general problem-solving capabilities. We approach this question through the mathematical formulation of analogies across different problems and solutions. We focus in particular on problems that could be represented as tree-like structures. Most importantly, we adopt a category-theoretic approach in formalising tree problems as categories, and in proving the existence of equivalences across apparently unrelated problem domains. We prove the existence of a functor between the category of tree problems and the category of solutions. We also provide a weaker version of the functor by quantifying equivalences of problem categories using a metric on tree problems.Comment: 10 pages, 4 figures, International Conference on Artificial General Intelligence (AGI) 201

    Anisakis infection in allis shad, Alosa alosa (Linnaeus, 1758), and twaite shad, Alosa fallax (LacépÚde, 1803), from Western Iberian Peninsula Rivers : zoonotic and ecological implications

    Get PDF
    Acknowledgments The authors would like to thank M. N. Cueto and J.M. Antonio (ECOBIOMAR) for their excellent technical support and also Rodrigo López for making the map of the study area. We also thank the personal of the Vigo IEO, for providing information about shad captures at sea collected on the basis of national program (AMDES) included in the European Data Collection Framework (DCF) project. We are also grateful to Comandancia Naval de Tui for providing fishing data. M. Bao is supported by a PhD grant from the University of Aberdeen and also by financial support of the contract from the EU Project PARASITE (grant number 312068). This study was partially supported by a PhD grant from the Portuguese Foundation for Science and Technology (FCT) SFRH/BD/44892/2008) and partially supported by the European Regional Development Fund (ERDF) through the COMPETE—Operational Competitiveness Programme and national funds through Foundation for Science and Technology (FCT), under the project BPEst-C/MAR/ LA0015/2013. The authors thank the staff of the Station of Hydrobiology of the USC BEncoro do Con^ due their participation in the surveys. This work has been partially supported by the project 10PXIB2111059PR of the Xunta de Galicia and the project MIGRANET of the Interreg IV BSUDOE (South-West Europe) Territorial Cooperation Programme (SOE2/P2/E288). D.J. Nachón is supported by a PhD grant from the Xunta de Galicia (PRE/2011/198)Peer reviewedPostprin
    • 

    corecore