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Abstract 
Tessellated surfaces generated from point clouds typically show inaccurate and jagged 

boundaries. This can lead to tolerance errors and problems such as machine judder if the 

model is used for ongoing manufacturing applications. This paper introduces a novel 

boundary point detection algorithm and spatial FFT-based filtering approach, which 

together allow for direct generation of low noise tessellated surfaces from point cloud 

data, which are not based on pre-defined threshold values. Existing detection techniques 

are optimized to detect points belonging to sharp edges and creases. The new algorithm 

is targeted to the detection of boundary points and it is able to do this better than the 

existing methods. The FFT-based edge reconstruction eliminates the problem of 

defining a specific polynomial function order for optimum polynomial curve fitting. 

The algorithms were tested to analyse the results and measure the execution time for 

point clouds generated from laser scanned measurements on a turbofan engine turbine 

blade with varying numbers of member points.  The reconstructed edges fit the 

boundary points with an improvement factor of 4.7 over a standard polynomial fitting 

approach.  Furthermore, through adding artificial noise it has been demonstrated that the 

detection algorithm is very robust for out-of-plane noise lower than 25% of the cloud 

resolution and it can produce satisfactory results when the noise is lower than 75%.  
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1. Introduction 

Three-dimensional (3D) scanning is increasingly used to analyse objects or 

environments in diverse applications including industrial design, orthotics and 

prosthetics, gaming and film production, reverse engineering and prototyping, quality 

control and documentation of cultural and architectural artefacts [1, 2]. Conventional 

reconstruction techniques generate tessellated surfaces from point clouds. Such 

tessellated models often show inaccurate and jagged boundaries that can lead to 

tolerance errors and problems such as machine judder if the models are used for 

ongoing manufacturing applications [3]. That is the reason why many existing 

commercial computer-aided manufacturing (CAM) applications are not able to use 

tessellated models, instead using precise analytical CAD models where the surfaces are 

mathematically represented [4]. Whilst the conversion of analytical geometries into 

meshed surfaces is straightforward, the reverse process of conversion of a tessellated 

model into an analytical CAD model is challenging and time-consuming. There are 
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circumstances where the original CAD model of a component is not available or 

deviates from the real part. New CAM software applications, able to use clean 

tessellated models, are emerging [4]; they enable the direct use of triangulated point 

clouds obtainable through surface mapping techniques. However, the point clouds 

obtained through surface mapping are typically affected by noise. New algorithms for 

optimum surface mesh refinement are required to improve the performance of emerging 

applications and to overcome the limitations of typical approaches based on polynomial 

smoothing.  Different technologies can be used to build coordinate measuring machines 

(CMM) or 3D-scanning devices [1]. Each technology comes with its own limitations, 

advantages and costs. A common factor for many CMM and 3D scanners is that they 

can measure the coordinates of a large number of points on an object surface and output 

a point cloud of the scanned area. . However, point clouds are generally not directly 

usable in most 3D applications, and therefore are usually converted to mesh models, 

NURBS surface models, or CAD models [5-7]. Tessellated models have emerged as a 

favoured technique; they are the easiest form of virtual models obtainable from point 

clouds with minimal processing. There are two different approaches to create a 

triangular meshed surface from a point cloud: using triangulation methods or surface 

reconstruction methods. Triangulation algorithms use the original points of the input 

point cloud, using them as the vertices of the mesh triangles. The Delaunay 

triangulation, named after Boris Delaunay for his work on the topic from 1934 [8], is 

the most popular algorithm of this kind. A bi-dimensional Delaunay triangulation 

ensures that the circumcircle associated with each triangle contains no other point in its 

interior. This definition extends naturally to three dimensions considering spheres 

instead of circles. Surface reconstruction algorithms differ from the triangulation 

method since they do not use the original points as the vertices of the mesh triangles but 

compute new points, whose density can vary according to the local curvature of the 3D 

geometry. Surface reconstruction from oriented points can be cast as a spatial problem, 

based on the Poisson's equation [9, 10]. 

Both approaches are not able to reconstruct the surface boundaries accurately, which 

makes the tessellated models unsuitable to be used for CAM toolpath generation. 

Triangulation methods produce meshed surfaces with jagged boundaries, since the 

original noisy points of the cloud are used as vertices of the mesh triangles. 

Reconstruction methods produce smooth boundaries, but they can be quite far from the 

original boundaries of the real surface. Indeed, Poisson’s surface reconstruction does 

not follow the boundary of the point cloud and replaces the original points with new 

points laying on a reconstructed continuous surface that satisfies the Poisson’s 

differential equation. 

The detection of cloud boundary points and the reconstruction of smooth boundary 

edges would allow trimming of the reconstructed tessellated models, to refine the mesh 

boundaries. Very few feature detection methods are optimized to work with point-

sampled geometries only. The major problem of these point based methods is the lack 

of knowledge concerning point normal and connectivity. This makes feature detection a 

more challenging task than in mesh based methods. Gumhold et al. [11] presented an 

algorithm that first analyses the neighbourhood of each point via a principal component 

analysis (PCA). The eigenvalues of the correlation matrix are then used to determine if 

a point belongs to a feature. This technique for the detection of features in point clouds 

is used as a pre-processing step for tessellated surface reconstruction with sharp features 
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[12]. There exist also several reconstruction methods that preserve sharp features during 

the surface reconstruction of a point cloud without pre-processing; for example the 

methods shown by Fleischmann et al. [13] and Öztireli et al. [14]. 

The existing techniques mentioned above are optimized to detect points belonging to 

sharp edges. This paper presents novel algorithms targeted to the detection of boundary 

points and the deterministic reconstruction of accurate and smooth surface boundaries 

from 3D point clouds. A smart approach known as Mesh Following Technique (MFT) 

[4], for the generation of robot tool-paths from STL models, has recently been 

published. The technique requires virtual tessellated surfaces with smooth boundary 

edges. 

The algorithms presented in this paper are useful tools to refine the boundary of 

tessellated surfaces obtained from 3D scanning point cloud data. They can be used to 

trim Delaunay triangulation or Poisson’s reconstructed surface meshes, facilitating the 

direct use of tessellated models, instead of analytical geometries. The remainder part of 

the paper describes the algorithms and shows qualitative and quantitative results, 

discussing advantages and disadvantages.  

 

2. Detection of boundary points 

Given a mapped surface in the form of a point cloud, the identification of the point 

cloud borderline, thus the detection of boundary points, is not a trivial task. The human 

brain is able to infer the border of a point cloud by simply looking at the arrangement of 

the sparse points. In computer science and computational geometry, a point cloud is an 

entity without a well-defined boundary. In the bi-dimensional domain, given a finite set 

of points, the problem of detecting the smallest convex polygon that contains all the 

given points of the cloud is solved through the quickhull method [15]. It uses a divide 

and conquer approach. This method works well but is only able to detect the boundary 

points that are part of the convex polygon and is only for bi-dimensional set of points. A 

generalization of quickhull, able to handle concave regions and holes in the point cloud, 

is the alpha-shape approach [16]. The Computational Geometry Algorithms Library 

(CGAL) [17] has a robust implementation of alpha-shape for 2D and 3D point clouds. 

For each real number 𝛼, the approach is based on the generalized disk of radius 1 𝛼⁄ . 

An edge of the polygon that contains all the given points (alpha-shape) is drawn 

between two members of the finite point set whenever there exists a generalized disk of 

radius 1 𝛼⁄  containing the entire point set and which has the property that the two points 

lie on its boundary. If 𝛼 = 0, then the alpha-shape associated with the finite point set is 

its ordinary convex hull given by quickhull. The limitation of the alpha-shape approach 

is that its performance depends on the set value of the parameter 𝛼. A value of α that 

produces a satisfactory result for a point cloud may not be suitable for other point sets, 

since point clouds can exhibit different point densities. This inconvenience is similar to 

what happens when obtaining a black and white picture from a grayscale image, through 

thresholding the pixel intensities; the optimal threshold value is affected by the average 

brightness of the image. Moreover, when the point density of a point cloud varies 

between across the cloud, the alpha-shape result can be satisfactory in some regions and 

poor in others. Non-parametric edge extraction methods based on kernel regression [14] 

and on analysis of eigenvalues [18] have been proposed in recent years. Such methods, 



4 

 

however, are optimized for the detection of internal sharp edges, rather than detecting 

the point cloud borderline. 

The boundary point detection algorithm presented in this paper, herein referred as BPD 

algorithm, does not need the definition of any threshold values. For every region of the 

cloud, it detects as many boundary points as possible, given the local resolution of the 

region. A 3D-point cloud is unorganized and the neighbourhood of a point is more 

complex than that of a pixel in an image. Generally, in 3D-point clouds, there are three 

types of neighbourhoods: spherical neighbourhood, cylindrical neighbourhood, and k-

nearest neighbours based neighbourhood [19]. The three types of neighbourhoods are 

based on different search methods. Given a point P, a spherical neighbourhood is 

formed by all 3D points in a sphere of fixed radius around P. A cylindrical 

neighbourhood is formed by all those 3D points whose 2D projections onto a plane (e.g. 

the ground plane) are within a circle of fixed radius around the projection of P. The k-

nearest neighbourhood (k-NN) search method is non-parametric and it is used in this 

work, since it does not need the definition of a radius value; it finds the closest k-

members of the cloud. Figure 1 shows a point cloud with the k-nearest neighbourhood 

of 5 points (A to E), where k is set to 30. The points of the cloud belonging to the 

neighbourhoods are indicated through filled circles. The other points of the cloud are 

represented with empty circles. The semi-transparent circles, centred at the points from 

A to E, highlight the best fit planes for each of the neighbourhoods. The normal 

directions of such planes are also shown through arrows pointing outwards from the 

neighbourhood parent points. The local cloud resolution for every member of the cloud 

is estimated through the following steps. Given a point of the cloud 𝑃𝑖, for every point 

of its neighbourhood (𝑃𝑖,𝑗), the minimum distance (𝑑𝑗,𝑘) between that point and all other 

neighbours is computed. The local point cloud resolution (𝛽𝑖) in 𝑃𝑖 is estimated as 𝛽𝑖 =
 𝜇𝑖 + 2𝜎𝑖, where 𝜇𝑖 is the mean value of the minimum distances and 𝜎𝑖 is their standard 

deviation. This method of computing the local resolution is robust, overcoming the 

problematic noisy nature of some point clouds collected through optical and 

photogrammetric method. If the distance values (𝑑𝑗,𝑘) are distributed according to a 

Gaussian distribution, the addition of 2𝜎𝑖 to the mean value ensures that 97.6% of the 

data values are considered and the major outliers are ignored. 

 
Figure 1 – Point cloud with examples of two boundary points on 

concave regions (A and B), an inner point (C) and two boundary 

points on convex regions (D and E). 

The alpha-shape method may not be able to detect some sections of the point cloud 

boundary with high concave curvature, if 𝛼 is set too low. On the other hand, it may 
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detect unwanted boundary points, if α is too high. The new method described here is 

capable of detecting boundary points belonging to convex and concave regions. 

The BPD method exploits the fact that there is one and only one circle that passes 

through three given points in the 3D space. Given the unclassified point 𝑃𝑖, the centre 

and the radius of all circles that pass for 𝑃𝑖 and any two other points of its 

neighbourhood are computed. The point is labelled as a boundary point if there is at 

least one circle with radius equal or bigger that 𝛽𝑖 and if the sphere for 𝑃𝑖, whose centre 

coincide with the centre of the circle, does not contain any other point of the 

neighbourhood. This is the case for point A and B, shown in Figure 1. Point A and B are 

two boundary points, since it is possible to find at least one circle that satisfies the 

above conditions (Figure 2). In order to avoid unnecessary computational efforts and yet 

consider all possible circles, all the originating point triples are identified through the 

binomial coefficient [20]. Working with k-nearest neighbourhoods and being the 

investigated point 𝑃𝑖 always part of the triples, the remaining points (k-1) are combined 

in couples with no repetitions. Thus, the total number of circles is equal to: 

𝑛 =
(𝑘−1)!

2! ∙ [(𝑘−1)−2]!
=

29!

2 ∙ 27!
=

29∙28

2
= 406     (1) 

 
Figure 2 – A and B labelled as boundary points. 

Although the presence of at least one circle that satisfies the above conditions allows to 

classify the investigated point as belonging to the point cloud boundary, its absence 

cannot be used to state that the point is an internal point of the cloud. Indeed the 

investigated point Pi can be located on a convex region of the boundary as well as being 

an internal point of the cloud. In such circumstances, although it may exist one circle 

with radius equal or bigger that 𝛽𝑖, the sphere for Pi, centred at the centre of the circle, 

will always contain some points of the neighbourhood. This is the case for the points C, 

D and E shown in in Figure 1. For such kind of points, thus when the point cannot be 

labelled as a boundary point through the first part of the detection algorithm described 

above, the algorithm continues with further operations. Each investigated point and its 

neighbours are projected to the best fit plane according to the normal vector associated 

with the point. The resulting bi-dimensional neighbourhood cloud can be plotted in 

polar coordinates, with Pi at the pole of the plot. Figure 3 shows the polar plots for point 

C, D and E and their neighbours. Pi is shown in red and its neighbour points are shown 

in blue. The blue and red dotted line of the plots in Figure 3 highlight, respectively, the 

minimum and maximum angle of the angular sector spanned by the points in the 

neighbourhood. 
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Figure 3 – Polar plot of point C, D and E and their neighbours. The solid and dashed 

lines illustrate the application of the algorithm. 

The fundamental idea behind the final step of the BPD algorithm is that the point of the 

cloud Pi  is a boundary point if it is not possible to find a path that surrounds it and 

passes through the neighbour points. Each point on the polar plot is determined by the 

distance from the pole (radial coordinate, 𝑅) and the angular coordinate (𝜃). Given a 

neighbourhood, the developed algorithm creates a path that surrounds the parent point at 

the pole. An incremental approach is used. All radial and angular coordinates of the 

neighbours are normalized, so that the coordinates of the j-th neighbour point are: 

𝑟𝑗 =  
𝑅𝑗−𝑅𝑚𝑖𝑛

𝑅𝑚𝑎𝑥−𝑅𝑚𝑖𝑛
        (2) 

𝜗𝑗 =  
𝜃𝑗−𝜃𝑚𝑖𝑛

𝜃𝑚𝑎𝑥−𝜃𝑚𝑖𝑛
        (3) 

where 𝑅𝑚𝑖𝑛, 𝑅𝑚𝑎𝑥 and 𝜃𝑚𝑖𝑛, 𝜃𝑚𝑎𝑥 are respectively the minimum and maximum values 

of the radial and angular coordinates. In order to select the starting point of the 

surrounding path, a characterizing parameter (𝛾) is given to each neighbour, such that: 

𝛾𝑗 =  𝑟𝑗 +  |𝜗𝑗 − 𝜗𝑏𝑖𝑠|        (4) 

where 𝜗𝑏𝑖𝑠 is the normalized angle of the direction bisecting the angular gap comprising 

all neighbours (between 𝜃𝑚𝑖𝑛 and 𝜃𝑚𝑎𝑥). The neighbour point with the minimum value 

of γ, as computed in Eq. 4, is selected as starting point for the surrounding path. From 

the starting point the algorithm progresses through linking the other points of the 

neighbourhood. The crossed neighbours are removed from the list of available points. 

The characterizing parameter of the generic p-th remaining point is computed as: 

𝛾𝑝 =  𝑟𝑝 + [(𝜗𝑝 − 𝜗𝑙𝑎𝑠𝑡) ∙ 𝑐]       (5) 

where 𝜗𝑙𝑎𝑠𝑡 is the normalized angular coordinate of the last crossed point and 𝑐 is a 

factor equal to -1 if 𝑠𝑔𝑛(𝜗𝑝 − 𝜗𝑙𝑎𝑠𝑡) = 𝑠𝑔𝑛(𝜗𝑙𝑎𝑠𝑡 − 𝜗𝑙𝑎𝑠𝑡−1) or equal to 1 otherwise. 

The factor 𝑐 facilitates the selection of a point that does not force a change of 

surrounding direction. For example, if the last selected point produced a clockwise 

rotation, any anti-clockwise rotation is penalised. The neighbour with the minimum 

value of γ, as computed in Eq. 5, becomes the new last point of the path. 

The incremental linkage of the neighbours keeps track of the spanned angle around the 

pole. The sum of the angle increments considered with their sign (𝛼 = ∑ ∆𝛼) and the 

sum of their absolute values (𝜏 = ∑|∆𝛼|) are updated each time a new point is selected 

after the starting point. The incremental linkage stops when there are no more linkable 

neighbour points or when 𝜏 > 2𝜋. If |𝛼| ≥ 2𝜋 the investigated point is an internal point 

of the cloud (e.g. point C in Figure 3), otherwise it is a boundary point (e.g. D and E in 
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Figure 3). The stopping condition of the incremental algorithm (𝜏 > 2𝜋) avoids 

superfluous computation efforts, since it is often possible to infer if a point belongs to 

the boundary without linking all neighbours. The solid line in Figure 3 shows the 

surrounding path created until 𝜏 > 2𝜋. For example, it is possible to determine that C 

does not belong to the boundary, linking only 10 out of 29 neighbours, since |𝛼| > 2𝜋. 

It is possible to state that D is a boundary point, through linking 18 out of 29 

neighbours; it results |α| < 2π, although the sum of the absolute angle increments is 

τ > 2π. In summary, the BPD method described here is capable of determining if a 

point Pi belongs to a concave boundary sections (e.g. point A in Figure 1), when the 

local curvature is as high as 1 𝛽𝑖⁄ . The method is also able to infer if a point belongs to 

the boundary of a hole in the point cloud (e.g. point B in Figure 1), when the hole radius 

is as small as 𝛽𝑖. Since 𝛽𝑖 is the local resolution, the method works well on point clouds 

with variable point density. 

 

3. Edge reconstruction 

The application of the BPD algorithm to the point cloud sample shown in Figure 1 finds 

all the boundary points, represented as empty circles in Figure 4. Also the 4 boundary 

points of the internal circular hole, whose radius is just above the local point cloud 

resolution, are detected as expected. The detected points need to be clustered, so that 

points belonging to the same boundary are grouped together. Moreover, the points of 

every cluster need to be ordered correctly. These tasks can be fulfilled through existing 

algorithms. For example, the clustered points can be ordered through algorithms capable 

of solving the so called travelling salesman problem (TSP). Given a random list of 

points and the distances between each pair of points, the solution of the TSP is the 

shortest possible path that crosses each point exactly once and returns to the origin point 

[21]. Therefore a closed boundary path is obtained from every cluster. These 

boundaries, given by the ordered points linked through line segments (see dashed lines 

in Figure 4) can be quite jagged in some areas. Therefore, it is evident that such 

boundaries are not suitable to trim the surface meshes obtainable from the point cloud. 

The boundary curves need smoothing to better resemble the real surface borderlines. 

This section of the paper introduces a novel raw boundary smoothing algorithm, herein 

referred as RBS algorithm, to improve the reconstruction of surface point cloud 

borderlines through accurate smoothing of the raw boundaries. 

 
Figure 4 – Closed boundaries partitioned into edges, obtained through 

clustering and ordering of the detected boundary points (jagged dashed line) 

and reconstructed edges (solid lines). 
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3.1 Detection of key points  

Before applying any smoothing algorithm to the closed loop boundary curves, it is 

necessary to highlight that the position of some of the detected boundary points should 

be preserved. This is the case for the borderline corners, where there is a sharp change 

in the boundary directionality. Indeed, such points usually play a crucial role in the 

definition of reference systems in CAM applications for the development of accurate 

operations, where the correct registration of the part virtual model is required. 

Therefore, the first step of the edge reconstruction algorithm is targeted to detect such 

key points. Given the i-th point of a closed boundary path, the point is labelled as corner 

if the radius of the circle for the investigated point, the precedent and the successive 

point is smaller than the value of the local point cloud resolution, 𝛽𝑖 (as calculated in the 

detection algorithm). This approach is able to identify the corner points from 𝑃1 to 𝑃5, 

highlighted with asterisks in Figure 4. It is worth noticing here that, although the 

corners can be found through applying a threshold value to the angle between the two 

borderline segments for each investigated point [22], this approach is advantageous and 

it is suitable to work with point clouds with variable density. The identified corners are 

used to divide the closed loop boundary into sections, corresponding to the edges of the 

surface geometry. The external boundary points of the cloud in Figure 4 are grouped in 

5 edges. The 4 internal boundary points are grouped in one single closed loop edge, 

since no corners are found there. 

3.2 Limitation of traditional curve smoothing methods 

Each edge could be smoothed through fitting a polynomial curve. Polynomial curve 

fitting is a common smoothing method and the functionality is also implemented in 

CAD/CAM commercial software applications (e.g. Rhinoceros®). Curve fitting is the 

process of approximating a pattern of points with a mathematical function [23]. Fitted 

curves can be used to infer values of a function where no data are available [24] (e.g. in 

the gaps between sampled points). The goal of curve fitting is to model the expected 

value of a dependent variable y in terms of the value of an independent variable (or 

vector of independent variables) x. In general, the expected value of y can be modelled 

as an nth degree polynomial function, yielding the general polynomial regression model 

based on the truncated Taylor’s series: 

𝑦 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + … + 𝑎𝑛𝑥𝑛 + 𝜀     (6) 

where ε is a random error with null mean. Given the points of an edge and the order of 

the target polynomial function, it is possible to compute the coefficients of the fitting 

function. The limitation of this smoothing approach is that the order of the target 

function is typically unknown and curve fitting remains a time-consuming iterative trial 

and error process for edge reconstruction. When there is no theoretical basis for 

choosing the order of the fitting polynomial function, the edges may be fitted with a 

spline functions composed of a sum of B-splines [25]. The places where the B-splines 

meet are known as knots. The main difficulty in applying this process is in determining 

the number of knots to use and where they should be placed [26]. 

3.3 FFT-based reconstruction 

The final step of the RBS algorithm, presented in this paper, introduces a robust 

approach based on the Fast Fourier Transform (FFT). The FFT is a well-known way to 

translate the information contained in a waveform from the time domain to frequency 
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domain. It is used for the spectral analysis of time-series and allows the application of 

high or low-pass filters, to respectively attenuate low or high frequencies. Here the FFT 

is applied to the pattern of the edge point Cartesian coordinates, to enable the 

application of low-pass filters able to improve the smoothness of the boundary edges. 

The exploitation of FFT to spatial patterns (waveforms sampled in the Cartesian domain 

rather than the time domain) is not new (e.g. it has been used for image processing 

[27]). However, there is no record of the FFT being applied to the problem of surface 

edge reconstruction. The nuances of the adaptation of FFT to this problem are described 

herein. 

Consider a series 𝑥(𝑘) with N samples. Furthermore, assume that the series outside the 

range between 0 and N-1 is extended N-periodic, which is 𝑥(𝑘) = 𝑥(𝑘 + 𝑁) for all k. 

The FFT of this series will be denoted 𝑋(𝑘), it will also have N samples. The FFT 

transform implies specific relationships between the series index and the frequency 

domain sample index. For the common case, where the FFT is applied to series 

representing a time sequence of length 𝑇, the samples in the frequency domain are 

spaced by 𝑓𝑠 = 1 𝑇⁄ . The first sample 𝑋(0) of the transformed series is the average of 

the input series. The frequency sample corresponding to 𝑓𝑁𝑦 = 𝑁 2𝑇⁄  is called Nyquist 

frequency. This is the highest frequency component that should exist in the input series 

for the FFT to yield uncorrupted results. More specifically if there are no frequencies 

above Nyquist the original pattern can be exactly reconstructed from the samples in the 

frequency domain. For the spatial problem of edge reconstruction, given the FFT is 

applied to the edge Cartesian component pattern, plotted as function of the curvilinear 

distance (𝑑), the spatial frequency is a measure of how often sinusoidal components (as 

determined by the FFT) repeat per unit of distance. The spatial frequency domain 

representation of any Cartesian component of a circular edge with radius (𝑅) and length 

(2𝜋𝑅) contains only one frequency component 𝑓𝑐 = 1 2𝜋𝑅⁄ . Therefore it is possible to 

deduce that, denoting the local curvature radius at the i-th point of the edge with 𝑅𝑖, the 

main spatial frequency occurring at that point is equal to 𝑓𝑖 = 1 2𝜋𝑅𝑖⁄ . According to the 

Nyquist theorem, when sampling an analogue signal in the time domain, the sampling 

rate must be at least equal to 2𝑓𝑚𝑎𝑥, where 𝑓𝑚𝑎𝑥 is the highest frequency component. 

The Nyquist rule applied to the spatial domain means that 𝛽𝑖 (the local point cloud 

resolution) limits the minimum edge radius that is possible to reconstruct at the i-th 

point. The smallest radius that is possible to reconstruct will be the one associated to a 

circumference of length 2𝜋𝛽𝑖 sampled with 2 points, corresponding to the spatial 

frequency 𝑓∗ = 2 2𝜋𝛽𝑖⁄ = 1 𝜋𝛽𝑖⁄ . The maximum alias-free spatial frequency 

component will be: 

𝑓𝑚𝑎𝑥 = 𝑓∗ 2⁄ = 1 2𝜋𝛽𝑖⁄ .        (7) 

The smallest edge radius of curvature that is possible to reconstruct at the i-th point will 

be equal to 𝑅𝑖
𝑚𝑎𝑥 = 𝛽𝑖. 

The plots in Figure 5a and 5b regard, respectively, the x-component pattern of the edge 

between 𝑃2 and 𝑃3 and of the closed loop internal hole edge of the cloud in Figure 4. 

The patterns are plotted as functions of the normalized curvilinear distance of the edge 

(𝑑∗ = 𝑑 𝐷⁄ , with 𝐷 being the total length of the edge). The original patterns, given by 

the dashed line that goes through the x-component samples (shown through round 

circles), are quite jagged. Figure 5 clarifies how a periodic waveform is obtained from 

the original pattern of each Cartesian component of a given edge. The pattern is first 
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translated along the direction of the ordinate axis to move the first point of the pattern to 

the origin of the plot. The pattern is then rotated by the angle 𝛼 to move the last point of 

the pattern on the horizontal axis. A copy of the resulting pattern is inverted, flipped and 

appended to the end extremity; it constitutes a complementary portion creating a period 

with the translated and rotated version of the original pattern (Figure 5a). Since the FFT 

assumes a constant sampling rate of the input pattern, the original randomly spaced 

samples are replaced with interpolated equally spaced samples. The number of 

interpolated samples (𝑁𝑝) is chosen appropriately to give a constant sampling interval 

(𝑑𝑠), equal or smaller than the minimum original sampling distance. In order to ensure a 

good filtering performance, it is necessary to have sufficient spatial frequency 

resolution. For such reason the period is repeated to get a minimum of 1000 samples in 

the input waveform of the FFT, giving a frequency resolution of 𝑓𝑠 = 1 (1000 ∙ 𝑑𝑠)⁄ . 

Therefore a low-pass filter is applied, cancelling all spatial frequency components 

higher than 𝑓𝑚𝑎𝑥, as expressed in Eq. 7. This produces a smoothed waveform for the 

edge component. The FFT input waveform shown in Figure 5a, artificially constructed 

to filter the x-component of the open edge comprised between 𝑃2 and 𝑃3, has a null 

mean value. The original edge extremities lie on the horizontal axis (the mean value 

line) and are not affected by the low-pass filtering. The Cartesian component values of 

the extremities are preserved. The first part of the waveform (the portion up to the total 

length 𝐷 of the original pattern) is rotated by negative 𝛼 and translated back to the 

original position. The smoothed boundary is obtained through filtering all the Cartesian 

components of all its edges. The preservation of the original edge extremity points 

makes sure that, when a boundary consists of multiple edges, two consecutive edges 

share a common point. Therefore, the chain of edges forms a closed boundary. If a 

boundary is formed by only one closed edge, like in the case of the internal hole 

boundary in Figure 4, the extremities of each of its Cartesian components have the same 

value (𝛼 = 0). Moreover the complementary portion to construct the period is a mere 

horizontally translated copy of the Cartesian component pattern (after its extremities are 

brought to the horizontal axis). The copy of the original pattern is not inverted nor 

flipped to create the complementary portion (Figure 5b). All points of the closed edge 

are affected by the filtering. The smoothed edges relative to the boundaries of the 

sample point cloud are shown through solid line curves in Figure 4. 
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Figure 5 – Creation of periodic waveform for application of spatial FFT to the 

x-component pattern of an open edge (a) and a closed edge (b). 

 

4. Results and performances 

This section of the paper analyses the results obtainable through the use of the 

introduced BPD and RBS algorithms. The computational performances are also 

examined and quantitative figures are reported. Figure 6 shows a schematic summary of 

the algorithm steps. The thick dashed line perimeters contain the novel algorithm 

components introduced by this paper. The BPD algorithm (Figure 6a) allows the 

unlabelled point of a surface point cloud to be grouped into two groups: boundary 

points and internal points. The boundary points are clustered and ordered, through 

existing algorithms, to constitute raw closed boundaries (jagged). The RBS algorithm 

(Figure 6b) identifies the boundary corners and divides each closed boundary into the 

constituting edges. Every edge is smoothed through spatial FFT-based filtering. A 

crucial advantage of the introduced algorithms is that they are not based on any 

threshold values that can be suitable for some point cloud but not suitable for others. 

The BPD is capable of labelling all points, observing the local resolution of the cloud 

for each point. The FFT-based edge reconstruction eliminates the problem of defining a 

specific polynomial function order for optimum polynomial curve fitting. In the 

approach introduced in this paper, the best edge smoothing performance is also ensured 

through applying a spatial low-pass filtering with cut-off frequency defined at every 

boundary point as a function of the local cloud resolution. 

In order to show the potentialities of the new algorithms, an aircraft turbine engine fan 

blade, 640 mm long and 300 mm wide (in average) was scanned through a coordinate 

measuring machine. The FARO Quantum Arm was used in conjunction with a laser 

profile mapping probe [28]. This 3D scanning equipment has a volumetric maximum 

deviation of ±74μm. The blade surface was scanned to obtain a uniform point cloud 

with circa 14 thousand points (approximately 72 points per square centimetre). 
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Figure 6 – Schematic summary of the algorithm steps: boundary point detection (a) and edge reconstruction (b). 

The cloud points were decimated to obtain four different point cloud versions, with 

target resolution respectively equal to 4, 8, 16 and 34mm. An additional point cloud was 

generated with variable point resolution, between 2 and 34mm. Such generated point 

clouds allowed testing the algorithms under controlled situations and facilitated the 

analysis of the results. In order to introduce well-defined internal boundaries, the points 

found within three spheres centred at fixed positions and with radius equal to 16, 32 and 

64mm were removed from the clouds. Therefore, each cloud presents three holes (H1, 

H2 and H3), with radii approximatively equal to the original generating spheres. The 

resulting five point clouds are shown by the top row plots in Figure 7. These plots show 

the detected boundary points through darker round point marks. The external and 

internal boundary points are detected as expected. The smallest radius of the hole 

detectable in a point cloud depends on the cloud resolution, as described in Section 2. 

Only four points of the 16mm and 32mm radius holes (H1 and H2) are detected in the 

clouds of Figure 7d and 7e, since the resolution of these clouds is close to their radii. H1 

cannot be detected on the 34mm resolution cloud (Figure 7e). 

Figure 8 shows the boundary points detected in the Stanford bunny [29], an open source 

computer graphics test meshed model, obtained through range scanning [30]. Similarly 

to how many researchers have used this model, as input for surface reconstruction 

algorithms, the mesh connectivity has been stripped away and the vertices have been 

treated as an unorganized point cloud in this work. It presents 35947 points and has an 

average resolution of 1.2mm. Boundary points were detected using a method based on 

principal component analysis (PCA) [11] (Figure 8a) and the new detection algorithm 

(Figure 8b). To appreciate the differences in performance it is important to differentiate 

boundary points and edge points; the latter points are located in areas where there is a 

sharp ripple (like in the bunny ears).  The PCA method detected points that are either on 

sharp crease lines or on the borderline of the point cloud holes. The BPD algorithm is 

https://en.wikipedia.org/wiki/Computer_graphics
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targeted to exclusively find borderline points; therefore it found two holes in the base of 

the bunny, originating from the original clay model (it was a hollow model). It should 

be noted that the BPD algorithm should not detect the extra edge and crease points 

detected by PCA (e.g. in the ears of the bunny). It is designed to detect boundary points 

(around holes or areas where the point density drops drastically), so that a boundary 

edge can be reconstructed and the tessellated surface can be trimmed. The BPD 

algorithm was capable of detecting four additional groups of boundary points (one 

group under the bunny chest, one group between the bunny front legs and two groups 

on the base), corresponding to the borderline of areas with poor range scanning 

coverage. The smallest two of these areas were not detected by the PCA method, 

showing how the BPD algorithm is more accurate for the detection of borderline points. 

The bottom row plots of Figure 7 shows the reconstructed boundary edges. The 

effectiveness of the FFT-based filtering algorithm is evident observing the smoothness 

of the edges. The smoothed boundaries of the internal holes, given by single closed 

edges, faithfully reproduces the roundness of the theoretical intersection between the 

original generating sphere and the blade surface. Only the boundaries of H1 and H2, 

reconstructed through only four detected points, show visible distortion. Although 

explaining how mesh trimming works is out of the scope of this paper, the reconstructed 

boundary edges can be used to trim the Poisson mesh, producing the clean boundary 

meshes highlighted in Figure 7. 

 
Figure 7 – Detected points (top row) and reconstructed boundary edges (bottom row) for point clouds with fixed 

resolution of 4 (a), 8 (b), 16 (c) and 34mm (d) and with variable resolution between 2 and 34mm (e). 
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Figure 8 – Detected points on the Stanford bunny [29], with  a method based 

on principal component analysis [11] (a) and with the BPD algorithm (b). 

The algorithms were tested, using a computing machine based on an Intel® Core(TM) 

i7-6820HQ CPU (2.70GHz), with 32Gb of RAM. The tests were carried out through 

MATLAB® 2016a, running on the Windows 10 64-bit operating system. Table 1 

reports quantitative outcomes obtained from the application of the BPD algorithm to the 

point clouds given in Figure 7. The initial rows of the table report the minimum, the 

mean, the maximum cloud resolution (𝛽) and its standard deviation (σ), followed by the 

number of points in the clouds. Therefore the table gives the number of boundary points 

detected by the detection algorithm and the time taken (in milliseconds [ms]) for its 

complete execution. The elapsed time is always lower than 3 seconds for all examined 

point clouds. 

Table 1 – Performances obtained from the application of the BPD 

algorithm. 

Cloud a b c d e 

Min 𝜷 [mm] 3.82 7.77 15.53 32.29 1.98 

Mean 𝜷 [mm] 4.19 8.44 16.87 34.52 3.71 

Max 𝜷 [mm] 4.85 9.36 18.98 40.42 34.86 

SD (σ) [mm] 0.11 0.20 0.52 1.14 4.30 

Number of points 12309 3095 791 203 7458 

Boundary points 632 315 156 72 397 

Detection time [ms] 2606 944 340 289 1892 

Ω [% of 𝜷𝒊] 25% 24% 27% 25% 26% 

Ψ [% of 𝜷𝒊] 80% 113% 84% 157% 75% 

The point clouds obtained through some 3D scanning methods are affected by out-of-

plane noise, meaning that the sampled points deviate from their ideal version lying on 

the surface. It is important to estimate how much the proposed detection algorithm is 

tolerant to such noise. Therefore the detection algorithm was repeatedly applied to 

versions of the point clouds with increasing random noise added to the original points. 

The noisy clouds were artificially obtained by moving each point along the normal 

direction of the local k-neighbourhood best fit plane. Each point was moved by 

distances equal to a percentage of the local cloud resolution. Starting from 0%, the noise 

percentage was increased by 1% at every repetition of the detection algorithm. The 

maximum percentage value after which at least one of the boundary points is not 

detected (false negative) is denoted as Ω. The value of Ω is around 25% for all the 

clouds of Figure 7. If the noise percentage is increased above Ω, some internal points of 

the cloud may be labelled as boundary points (false positives). The maximum 

percentage value after which at least one of the internal points is labelled as boundary 

point is denoted as Ψ. The value of Ψ in Table 1 are all above 75%. Therefore, the 

detection algorithm is very robust for out-of-plane noise lower than 25% of the cloud 

resolution and it can produce satisfactory results when the noise is lower than circa 
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75%. With noise values between 25% and 75% of the cloud resolution, the detection 

algorithm will miss some boundary points but no outliers will be generated. 

Figure 9 compares, for the 16mm average resolution point cloud, polynomial fitting  

and B-spline edges of 2nd and 3rd order with the edges reconstructed through the new 

RBS approach (as described within the thickest dashed perimeter in Figure 6b). It is 

evident that the polynomial fitting produces unsatisfactory edges, especially for the 

internal boundaries. B-spline edges present excessive wrinkling, thus poor smoothing. 

 
Figure 9 – Comparison of reconstructed edges (red line) with polynomial 

fitting and B-spline edges (black line) of 2nd  and 3rd order. 

Table 2 gives quantitative results on the performance of the RBS algorithm, compared 

to 3rd order polynomial fitting and B-splines, for all point clouds in Figure 7. 
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Table 2 – Performances of the RBS algorithm, compared to 3rd order 

polynomial fitting. 

Cloud a b c d e 

N
ew

 m
et

h
o

d
 Reconstruction time [ms] 528 305 143 71 385 

Mean dist. to points [mm] 0.41 0.84 0.96 1.38 0.22 

Max dist. to points [mm] 2.17 4.16 6.73 3.76 2.43 

Mean dist. to mesh [mm] 0.07 0.25 0.95 1.20 0.73 

Max dist. to mesh [mm] 0.80 1.68 4. 51 4.23 5.77 

P
o

l.
 f

it
ti

n
g
 Reconstruction time [ms] 20 19 17 15 19 

Mean dist. to points [mm] 3.61 3.78 4.95 5.64 3.83 

Max dist. to points [mm] 34.8 33.0 32.7 40.0 30.1 

Mean dist. to mesh [mm] 1.00 0.89 1.08 1.43 1.27 

Max dist. to mesh [mm] 7.03 5.98 6.56 7.70 12.5 

B
-S

p
li

n
es

 

Reconstruction time [ms] 102 60 39 25 69 

Mean dist. to points [mm] ≈0 ≈0 ≈0 ≈0 ≈0 

Max dist. to points [mm] ≈0 ≈0 ≈0 ≈0 ≈0 

Mean dist. to mesh [mm] 0.05 0.11 0.24 0.46 0.45 

Max dist. to mesh [mm] 0.78 1.12 1.35 3.08 3.30 

Although the execution time of the new FFT-based algorithm is always one order of 

magnitude higher than the time for polynomial fitting and for B-spline computation, the 

smooth edges produced by the new approach fit the surface contour better than 

polynomial fitting and B-splines. The table reports the mean, maximum and standard 

deviation (STD) values for the distances between the boundary points and the smoothed 

edges and for the distance between the reconstructed surface mesh and the reconstructed 

edges. In average, the reconstructed edges computed through the new approach fit the 

boundary points 4.7 times better than the 3rd order polynomial edges. Moreover they 

follow the reconstructed surface mesh contour 77% better than the polynomial fitting 

edges. Although the B-splines seem to follow the reconstructed mesh better than the 

new approach, 3rd order B-splines do not produce significant smoothing of the original 

boundary points; the distance between the B-splines and the points being circa equal to 

0 is not a sign of good performance. The accuracy with which the polynomial and B-

spline edges fit the boundary points and the reconstructed surface can be improved by 

increasing the order of the functions, but this impacts on the time required to compute 

the function coefficients. Moreover high order polynomials often suffer from severe 

ringing between the data points. The RBS approach reconstructs the optimum edges 

without the need to specify any parameter, unlike the function order in the polynomial 

and the B-spline fitting.  

 

5. Conclusions 

Tessellated surfaces generated from point clouds typically show inaccurate and jagged 

boundaries. This can lead to tolerance errors and problems such as machine judder if the 

model is used for ongoing manufacturing applications. This is the reason why many 

existing commercial computer-aided manufacturing (CAM) applications are not able to 

use tessellated models. This work presented novel algorithms to refine the boundary of 

meshed surfaces obtained from 3D scanning point cloud data. The BPD algorithm 

allows the unlabelled point of a surface point cloud to be grouped into two groups: 

boundary points and internal points. Existing detection techniques are optimized to 
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detect points belonging to sharp edges and creases. The BPD algorithm is targeted to the 

detection of boundary points and it is able to do this better than the existing methods. 

The RBS algorithm identifies the boundary corners and divides each closed boundary 

into the constituting edges. Every edge is smoothed through spatial FFT-based filtering. 

A crucial advantage of the introduced algorithms is that they are not based on any 

threshold values that can be suitable for some point cloud but not suitable for others. 

The FFT-based edge reconstruction eliminates the problem of defining a specific 

polynomial function order for optimum polynomial curve fitting. The algorithms were 

tested to analyse the results and measure the execution time for point clouds generated 

from laser scanned measurements on a turbofan engine turbine blade with varying 

numbers of member points. Through adding artificial noise it has been demonstrated 

that the BPD algorithm is very robust for out-of-plane noise lower than 25% of the 

cloud resolution and it can produce satisfactory results when the noise is lower than 

circa 75%. With noise values between 25% and 75% of the cloud resolution, the 

detection algorithm will miss some boundary points but no outliers will be generated. 

Quantitative results on the performance of the RBS algorithm were also presented. The 

reconstructed edges computed through the new approach fit the boundary points by a 

factor of 4.7 times better than polynomial edges. Moreover they follow the 

reconstructed surface mesh contour with an improvement of 77% compared to the 

polynomial fitting edges. 
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