781 research outputs found
Predicting FVIII Activity in Patients Who Use Recombinant FVIII Fc Fusion Protein for Prophylaxis and Treatment of Bleeding Episodes
Hadronic production of bottom-squark pairs with electroweak contributions
We present the complete computation of the tree-level and the next-to-leading
order electroweak contributions to bottom-squark pair production at the LHC.
The computation is performed within the minimal supersymmetric extension of the
Standard Model. We discuss the numerical impact of these contributions in
several supersymmetric scenarios.Comment: 33 pages, v2: preprint numbers correcte
SUSY parameter determination at the LHC using cross sections and kinematic edges
We study the determination of supersymmetric parameters at the LHC from a
global fit including cross sections and edges of kinematic distributions. For
illustration, we focus on a minimal supergravity scenario and discuss how well
it can be constrained at the LHC operating at 7 and 14 TeV collision energy,
respectively. We find that the inclusion of cross sections greatly improves the
accuracy of the SUSY parameter determination, and allows to reliably extract
model parameters even in the initial phase of LHC data taking with 7 TeV
collision energy and 1/fb integrated luminosity. Moreover, cross section
information may be essential to study more general scenarios, such as those
with non-universal gaugino masses, and distinguish them from minimal,
universal, models.Comment: 22 pages, 8 figure
TRY plant trait database - enhanced coverage and open access
Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
Combining Anomaly and Z' Mediation of Supersymmetry Breaking
We propose a scenario in which the supersymmetry breaking effect mediated by
an additional U(1)' is comparable with that of anomaly mediation. We argue that
such a scenario can be naturally realized in a large class of models. Combining
anomaly with Z' mediation allows us to solve the tachyonic slepton problem of
the former and avoid significant fine tuning in the latter. We focus on an
NMSSM-like scenario where U(1)' gauge invariance is used to forbid a tree-level
mu term, and present concrete models, which admit successful dynamical
electroweak symmetry breaking. Gaugino masses are somewhat lighter than the
scalar masses, and the third generation squarks are lighter than the first two.
In the specific class of models under consideration, the gluino is light since
it only receives a contribution from 2-loop anomaly mediation, and it decays
dominantly into third generation quarks. Gluino production leads to distinct
LHC signals and prospects of early discovery. In addition, there is a
relatively light Z', with mass in the range of several TeV. Discovering and
studying its properties can reveal important clues about the underlying model.Comment: Minor changes: references added, typos corrected, journal versio
Inflation and dark matter in two Higgs doublet models
We consider the Higgs inflation in the extension of the Standard Model with
two Higgs doublets coupled to gravity non-minimally. In the presence of an
approximate global U(1) symmetry in the Higgs sector, both radial and angular
modes of neutral Higgs bosons drive inflation where large non-Gaussianity is
possible from appropriate initial conditions on the angular mode. We also
discuss the case with single-field inflation for which the U(1) symmetry is
broken to a Z_2 subgroup. We show that inflationary constraints, perturbativity
and stability conditions restrict the parameter space of the Higgs quartic
couplings at low energy in both multi- and single-field cases. Focusing on the
inert doublet models where Z_2 symmetry remains unbroken at low energy, we show
that the extra neutral Higgs boson can be a dark matter candidate consistent
with the inflationary constraints. The doublet dark matter is always heavy in
multi-field inflation while it can be light due to the suppression of the
co-annihilation in single-field inflation. The implication of the extra quartic
couplings on the vacuum stability bound is also discussed in the light of the
recent LHC limits on the Higgs mass.Comment: (v1) 28 pages, 8 figures; (v2) 29 pages, a new subsection 3.3 added,
references added and typos corrected, to appear in Journal of High Energy
Physic
Stress-Induced Reinstatement of Drug Seeking: 20 Years of Progress
In human addicts, drug relapse and craving are often provoked by stress. Since 1995, this clinical scenario has been studied using a rat model of stress-induced reinstatement of drug seeking. Here, we first discuss the generality of stress-induced reinstatement to different drugs of abuse, different stressors, and different behavioral procedures. We also discuss neuropharmacological mechanisms, and brain areas and circuits controlling stress-induced reinstatement of drug seeking. We conclude by discussing results from translational human laboratory studies and clinical trials that were inspired by results from rat studies on stress-induced reinstatement. Our main conclusions are (1) The phenomenon of stress-induced reinstatement, first shown with an intermittent footshock stressor in rats trained to self-administer heroin, generalizes to other abused drugs, including cocaine, methamphetamine, nicotine, and alcohol, and is also observed in the conditioned place preference model in rats and mice. This phenomenon, however, is stressor specific and not all stressors induce reinstatement of drug seeking. (2) Neuropharmacological studies indicate the involvement of corticotropin-releasing factor (CRF), noradrenaline, dopamine, glutamate, kappa/dynorphin, and several other peptide and neurotransmitter systems in stress-induced reinstatement. Neuropharmacology and circuitry studies indicate the involvement of CRF and noradrenaline transmission in bed nucleus of stria terminalis and central amygdala, and dopamine, CRF, kappa/dynorphin, and glutamate transmission in other components of the mesocorticolimbic dopamine system (ventral tegmental area, medial prefrontal cortex, orbitofrontal cortex, and nucleus accumbens). (3) Translational human laboratory studies and a recent clinical trial study show the efficacy of alpha-2 adrenoceptor agonists in decreasing stress-induced drug craving and stress-induced initial heroin lapse
Higgs Low-Energy Theorem (and its corrections) in Composite Models
The Higgs low-energy theorem gives a simple and elegant way to estimate the
couplings of the Higgs boson to massless gluons and photons induced by loops of
heavy particles. We extend this theorem to take into account possible nonlinear
Higgs interactions resulting from a strong dynamics at the origin of the
breaking of the electroweak symmetry. We show that, while it approximates with
an accuracy of order a few percents single Higgs production, it receives
corrections of order 50% for double Higgs production. A full one-loop
computation of the gg->hh cross section is explicitly performed in MCHM5, the
minimal composite Higgs model based on the SO(5)/SO(4) coset with the Standard
Model fermions embedded into the fundamental representation of SO(5). In
particular we take into account the contributions of all fermionic resonances,
which give sizeable (negative) corrections to the result obtained considering
only the Higgs nonlinearities. Constraints from electroweak precision and
flavor data on the top partners are analyzed in detail, as well as direct
searches at the LHC for these new fermions called to play a crucial role in the
electroweak symmetry breaking dynamics.Comment: 30 pages + appendices and references, 12 figures. v2: discussion of
flavor constraints improved; references added; electroweak fit updated,
results unchanged. Matches published versio
Acute physiological stress down-regulates mRNA expressions of growth-related genes in coho salmon
Growth and development in fish are regulated to a major extent by growth-related factors, such as liver-derived insulin-like growth factor (IGF) -1 in response to pituitary-secreted growth hormone (GH) binding to the GH receptor (GHR). Here, we report on the changes in the expressions of gh, ghr, and igf1 genes and the circulating levels of GH and IGF-1 proteins in juvenile coho salmon (Oncorhynchus kisutch) in response to handling as an acute physiological stressor. Plasma GH levels were not significantly different between stressed fish and prestressed control. Plasma IGF-1 concentrations in stressed fish 1.5 h post-stress were the same as in control fish, but levels in stressed fish decreased significantly 16 h post-stress. Real-time quantitative PCR (qPCR) analysis showed that ghr mRNA levels in pituitary, liver, and muscle decreased gradually in response to the stressor. After exposure to stress, hepatic igf1 expression transiently increased, whereas levels decreased 16 h post-stress. On the other hand, the pituitary gh mRNA level did not change in response to the stressor. These observations indicate that expression of gh, ghr, and igf1 responded differently to stress. Our results show that acute physiological stress can mainly down-regulate the expressions of growth-related genes in coho salmon in vivo. This study also suggests that a relationship between the neuroendocrine stress response and growth-related factors exists in fish.Peer reviewed: YesNRC publication: Ye
Anti-relapse neurons in the infralimbic cortex of rats drive relapse-suppression by drug omission cues
Drug addiction is a chronic relapsing disorder of compulsive drug use. Studies of the neurobehavioral factors that promote drug relapse have yet to produce an effective treatment. Here we take a different approach and examine the factors that suppress – rather than promote – relapse. Adapting Pavlovian procedures to suppress operant drug response, we determined the anti-relapse action of environmental cues that signal drug omission (unavailability) in rats. Under laboratory conditions linked to compulsive drug use and heightened relapse risk, drug omission cues suppressed three major modes of relapse-promotion (drug-predictive cues, stress, and drug exposure) for cocaine and alcohol. This relapse-suppression is partially driven by omission cue-reactive neurons, which constitute small subsets of glutamatergic and GABAergic cells, in the infralimbic cortex. Future studies of such neural activity-based cellular units (neuronal ensembles/memory engram cells) for relapse-suppression can be used to identify alternate targets for addiction medicine through functional characterization of anti-relapse mechanisms
- …
