10 research outputs found

    Bacteriological etiology and treatment of mastitis in Finnish dairy herds

    Get PDF
    Background: The Finnish dairy herd recording system maintains production and health records of cows and herds. Veterinarians and farmers register veterinary treatments in the system. Milk samples for microbiological analysis are routinely taken from mastitic cows. The laboratory of the largest dairy company in Finland, Valio Ltd., analyzes most samples using real-time PCR. This study addressed pathogen-specific microbiological data and treatment and culling records, in combination with cow and herd characteristics, from the Finnish dairy herd recording system during 2010-2012. Results: The data derived from 240,067 quarter milk samples from 93,529 dairy cows with mastitis; 238,235 cows from the same herds served as the control group. No target pathogen DNA was detected in 12% of the samples. In 49% of the positive samples, only one target species and in 19%, two species with one dominant species were present. The most common species in the samples with a single species only were coagulase-negative staphylococci (CNS) (43%), followed by Staphylococcus aureus (21%), Streptococcus uberis (9%), Streptococcus dysgalactiae (8%), Corynebacterium bovis (7%), and Escherichia coli (5%). On average, 36% of the study cows and 6% of the control cows had recorded mastitis treatments during lactation. The corresponding proportions were 16 and 6% at drying-off. For more than 75% of the treatments during lactation, diagnosis was acute clinical mastitis. In the milk samples from cows with a recorded mastitis treatment during lactation, CNS and S. aureus were most common, followed by streptococci. Altogether, 48% of the cows were culled during the study. Mastitis was reported as the most common reason to cull; 49% of study cows and 18% of control cows were culled because of mastitis. Culling was most likely if S. aureus was detected in the milk sample submitted during the culling year. Conclusions: The PCR test has proven to be an applicable method also for large-scale use in bacterial diagnostics. In the present study, microbiological diagnosis was unequivocal in the great majority of samples where a single species or two species with one dominating were detected. Coagulase-negative staphylococci and S. aureus were the most common species. S. aureus was also the most common pathogen among the culled cows, which emphasizes the importance of preventive measures.Peer reviewe

    Changing trends in mastitis

    Get PDF
    <p>Abstract</p> <p>The global dairy industry, the predominant pathogens causing mastitis, our understanding of mastitis pathogens and the host response to intramammary infection are changing rapidly. This paper aims to discuss changes in each of these aspects. Globalisation, energy demands, human population growth and climate change all affect the dairy industry. In many western countries, control programs for contagious mastitis have been in place for decades, resulting in a decrease in occurrence of <it>Streptococcus agalactiae </it>and <it>Staphylococcus aureus </it>mastitis and an increase in the relative impact of <it>Streptococcus uberis </it>and <it>Escherichia coli </it>mastitis. In some countries, <it>Klebsiella </it>spp. or <it>Streptococcus dysgalactiae </it>are appearing as important causes of mastitis. Differences between countries in legislation, veterinary and laboratory services and farmers' management practices affect the distribution and impact of mastitis pathogens. For pathogens that have traditionally been categorised as contagious, strain adaptation to human and bovine hosts has been recognised. For pathogens that are often categorised as environmental, strains causing transient and chronic infections are distinguished. The genetic basis underlying host adaptation and mechanisms of infection is being unravelled. Genomic information on pathogens and their hosts and improved knowledge of the host's innate and acquired immune responses to intramammary infections provide opportunities to expand our understanding of bovine mastitis. These developments will undoubtedly contribute to novel approaches to mastitis diagnostics and control.</p

    Pathogen group specific risk factors at herd, heifer and quarter levels for intramammary infections in early lactating dairy heifers

    No full text
    Risk factors for intramammary infections caused by coagulase-negative staphylococci, contagious major pathogens and environmental major pathogens in early lactating heifers were evaluated at the herd, heifer and quarter levels. In total, 764 quarters of 191 dairy heifers in 20 randomly selected farms in Flanders (Belgium) were sampled. Quarter milk samples were collected between 1 and 4 days in milk and between 5 and 8 days in milk for bacteriological culture. Data were analyzed using multivariable, multilevel logistic regression analysis. Higher average herd milk somatic cell count (>200,000 cells/mL), not having an effective fly control strategy, contact with lactating cows prior to calving and moderate to severe udder edema prior to calving increased the odds of intramammary infections caused by contagious major pathogens. Poor heifer hygiene and lack of mineral/vitamin supplementation prior to calving were risk factors for intramammary infection caused by environmental major pathogens. Teat apex colonization with coagulase-negative staphylococci prior to calving seemed to protect quarters against intramammary infections caused by major pathogens. Poor heifer hygiene before calving, a non-clipped udder and not practicing of teat dipping prior to calving increased the odds of intramammary infection with coagulase-negative staphylococci. Although management is important in the prevention and control of intramammary infections in early lactating heifers, most variation in the prevalence of intramammary infections resided at the heifer and quarter levels, indicating that the susceptibility for intramammary infections around calving is mainly determined by heifer and quarter characteristics

    Time dependent neuroprotection of mycophenolate mofetil: effects on temporal dynamics in glial proliferation, apoptosis, and scar formation

    Get PDF
    BACKGROUND: Immunosuppressants such as mycophenolate mofetil (MMF) have the capacity to inhibit microglial and astrocytic activation and to reduce the extent of cell death after neuronal injury. This study was designed to determine the effective neuroprotective time frame in which MMF elicits its beneficial effects, by analyzing glial cell proliferation, migration, and apoptosis. METHODS: Using organotypic hippocampal slice cultures (OHSCs), temporal dynamics of proliferation and apoptosis after N-methyl-D-aspartate (NMDA)-mediated excitotoxicity were analyzed by quantitative morphometry of Ki-67 or cleaved caspase-3 immunoreactive glial cells. Treatment on NMDA-lesioned OHSCs with mycophenolate mofetil (MMF)100 μg/mL was started at different time points after injury or performed within specific time frames, and the numbers of propidium iodide (PI)(+) degenerating neurons and isolectin (I)B(4)(+) microglial cells were determined. Pre-treatment with guanosine 100 μmol/l was performed to counteract MMF-induced effects. The effects of MMF on reactive astrocytic scar formation were investigated in the scratch-wound model of astrocyte monolayers. RESULTS: Excitotoxic lesion induction led to significant increases in glial proliferation rates between 12 and 36 hours after injury and to increased levels of apoptotic cells between 24 and 72 hours after injury. MMF treatment significantly reduced glial proliferation rates without affecting apoptosis. Continuous MMF treatment potently reduced the extent of neuronal cell demise when started within the first 12 hours after injury. A crucial time-frame of significant neuroprotection was identified between 12 and 36 hours after injury. Pre-treatment with the neuroprotective nucleoside guanosine reversed MMF-induced antiproliferative effects on glial cells. In the scratch-wound model, gap closure was reached within 48 hours in controls, and was potently inhibited by MMF. CONCLUSIONS: Our data indicate that immunosuppression by MMF significantly attenuates the extent of neuronal cell death when administered within a crucial time frame after injury. Moreover, long-lasting immunosuppression, as required after solid-organ transplantation, does not seem to be necessary. Targeting inosine 5-monophosphate dehydrogenase, the rate-limiting enzyme of purine synthesis, is an effective strategy to modulate the temporal dynamics of proliferation and migration of microglia and astrocytes, and thus to reduce the extent of secondary neuronal damage and scar formation

    Multifocal motor neuropathy: diagnosis, pathogenesis and treatment strategies

    No full text
    corecore