6,018 research outputs found

    Phase Transitions in a Dusty Plasma with Two Distinct Particle Sizes

    Full text link
    In semiconductor manufacturing, contamination due to particulates significantly decreases the yield and quality of device fabrication, therefore increasing the cost of production. Dust particle clouds can be found in almost all plasma processing environments including both plasma etching devices and in plasma deposition processes. Dust particles suspended within such plasmas will acquire an electric charge from collisions with free electrons in the plasma. If the ratio of inter-particle potential energy to the average kinetic energy is sufficient, the particles will form either a liquid structure with short range ordering or a crystalline structure with long range ordering. Otherwise, the dust particle system will remain in a gaseous state. Many experiments have been conducted over the past decade on such colloidal plasmas to discover the character of the systems formed, but more work is needed to fully understand these structures. The preponderance of previous experiments used monodisperse spheres to form complex plasma systems

    Dependence of two-nucleon momentum densities on total pair momentum

    Full text link
    Two-nucleon momentum distributions are calculated for the ground states of 3He and 4He as a function of the nucleons' relative and total momenta. We use variational Monte Carlo wave functions derived from a realistic Hamiltonian with two- and three-nucleon potentials. The momentum distribution of pp pairs is found to be much smaller than that of pn pairs for values of the relative momentum in the range (300--500) MeV/c and vanishing total momentum. However, as the total momentum increases to 400 MeV/c, the ratio of pp to pn pairs in this relative momentum range grows and approaches the limit 1/2 for 3He and 1/4 for 4He, corresponding to the ratio of pp to pn pairs in these nuclei. This behavior should be easily observable in two-nucleon knock-out processes, such as A(e,e'pN).Comment: 3 pages, 3 figure

    Tensor Forces and the Ground-State Structure of Nuclei

    Get PDF
    Two-nucleon momentum distributions are calculated for the ground states of nuclei with mass number A8A\leq 8, using variational Monte Carlo wave functions derived from a realistic Hamiltonian with two- and three-nucleon potentials. The momentum distribution of npnp pairs is found to be much larger than that of pppp pairs for values of the relative momentum in the range (300--600) MeV/c and vanishing total momentum. This order of magnitude difference is seen in all nuclei considered and has a universal character originating from the tensor components present in any realistic nucleon-nucleon potential. The correlations induced by the tensor force strongly influence the structure of npnp pairs, which are predominantly in deuteron-like states, while they are ineffective for pppp pairs, which are mostly in 1^1S0_0 states. These features should be easily observable in two-nucleon knock-out processes, such as A(e,enp)A(e,e^\prime np) and A(e,epp)A(e,e^\prime pp).Comment: 4 pages including 3 figure

    Cold neutrons trapped in external fields

    Full text link
    The properties of inhomogeneous neutron matter are crucial to the physics of neutron-rich nuclei and the crust of neutron stars. Advances in computational techniques now allow us to accurately determine the binding energies and densities of many neutrons interacting via realistic microscopic interactions and confined in external fields. We perform calculations for different external fields and across several shells to place important constraints on inhomogeneous neutron matter, and hence the large isospin limit of the nuclear energy density functionals that are used to predict properties of heavy nuclei and neutron star crusts. We find important differences between microscopic calculations and current density functionals; in particular the isovector gradient terms are significantly more repulsive than in traditional models, and the spin-orbit and pairing forces are comparatively weaker.Comment: 5 pages, 4 figures, final version. Additional material reference added in the published versio

    Dusty Plasma Correlation Function Experiment

    Full text link
    Dust particles immersed within a plasma environment, such as those in protostellar clouds, planetary rings or cometary environments, will acquire an electric charge. If the ratio of the inter-particle potential energy to the average kinetic energy is high enough the particles will form either a "liquid" structure with short-range ordering or a crystalline structure with long range ordering. Many experiments have been conducted over the past several years on such colloidal plasmas to discover the nature of the crystals formed, but more work is needed to fully understand these complex colloidal systems. Most previous experiments have employed monodisperse spheres to form Coulomb crystals. However, in nature (as well as in most plasma processing environments) the distribution of particle sizes is more randomized and disperse. This paper reports experiments which were carried out in a GEC rf reference cell modified for use as a dusty plasma system, using varying sizes of particles to determine the manner in which the correlation function depends upon the overall dust grain size distribution. (The correlation function determines the overall crystalline structure of the lattice.) Two dimensional plasma crystals were formed of assorted glass spheres with specific size distributions in an argon plasma. Using various optical techniques, the pair correlation function was determined and compared to those calculated numerically.Comment: 6 pages, Presented at COSPAR '0

    Ab initio calculation of neutral-current ν\nu-12^{12}C inclusive quasielastic scattering

    Full text link
    Quasielastic neutrino scattering is an important aspect of the experimental program to study fundamental neutrino properties including neutrino masses, mixing angles, the mass hierarchy and CP-violating phase. Proper interpretation of the experiments requires reliable theoretical calculations of neutrino-nucleus scattering. In this paper we present calculations of response functions and cross sections by neutral-current scattering of neutrinos off 12^{12}C. These calculations are based on realistic treatments of nuclear interactions and currents, the latter including the axial-, vector-, and vector-axial interference terms crucial for determining the difference between neutrino and anti-neutrino scattering and the CP-violating phase. We find that the strength and energy-dependence of two-nucleon processes induced by correlation effects and interaction currents are crucial in providing the most accurate description of neutrino-nucleus scattering in the quasielastic regime.Comment: 5 pages, 2 figure

    Quantum Monte Carlo study of inhomogeneous neutron matter

    Full text link
    We present an ab-initio study of neutron drops. We use Quantum Monte Carlo techniques to calculate the energy up to 54 neutrons in different external potentials, and we compare the results with Skyrme forces. We also calculate the rms radii and radial densities, and we find that a re-adjustment of the gradient term in Skyrme is needed in order to reproduce the properties of these systems given by the ab-initio calculation. By using the ab-initio results for neutron drops for close- and open-shell configurations, we suggest how to improve Skyrme forces when dealing with systems with large isospin-asymmetries like neutron-rich nuclei.Comment: 8 pages, 6 figures, talk given at Horizons on Innovative Theories, Experiments, and Supercomputing in Nuclear Physics 2012, (HITES2012), New Orleans, Louisiana, June 4-7, 2012; to appear in Journal of Physics: Conference Series (JPCS
    corecore