103 research outputs found

    Computational fluid dynamicaccuracy in mimicking changes in blood hemodynamics in patients with acute type IIIb aortic dissection treated with TEVAR

    Get PDF
    Background: We aimed to verify the accuracy of the Computational Fluid Dynamics (CFD) algorithm for blood flow reconstruction for type IIIb aortic dissection (TBAD) before and after thoracic endovascular aortic repair (TEVAR). Methods: We made 3D models of the aorta and its branches using pre- and post-operative CT data from five patients treated for TBAD. The CFD technique was used to quantify the displacement forces acting on the aortic wall in the areas of endograft, mass flow rate/velocity and wall shear stress (WSS). Calculated results were verified with ultrasonography (USG-Doppler) data. Results: CFD results indicated that the TEVAR procedure caused a 7-fold improvement in overall blood flow through the aorta (p = 0.0001), which is in line with USG-Doppler data. A comparison of CFD results and USG-Doppler data indicated no significant change in blood flow through the analysed arteries. CFD also showed a significant increase in flow rate for thoracic trunk and renal arteries, which was in accordance with USG-Doppler data (accuracy 90% and 99.9%). Moreover, we observed a significant decrease in WSS values within the whole aorta after TEVAR compared to pre-TEVAR (1.34 ± 0.20 Pa vs. 3.80 ± 0.59 Pa, respectively, p = 0.0001). This decrease was shown by a significant reduction in WSS and WSS contours in the thoracic aorta (from 3.10 ± 0.27 Pa to 1.34 ± 0.11Pa, p = 0.043) and renal arteries (from 4.40 ± 0.25 Pa to 1.50 ± 0.22 Pa p = 0.043). Conclusions: Post-operative remodelling of the aorta after TEVAR for TBAD improved hemodynamic patterns reflected by flow, velocity and WSS with an accuracy of 99%

    Numerical description of jet and duct ventilation in underground garage after LPG dispersion

    Get PDF
    Contamination of toxic and odorous gases emitted from stacks in buildings located in an urban environment are potential health hazards to citizens. A simulation using the computational fluid dynamic technique may provide detailed data on the flammable region and spatial dispersion of released gases. Concentrations or emissions associated with garage sources and garage-to-house migration rates are needed to estimate potential exposures and risk levels. Therefore, the aim of the study was to use an original mathematical model to predict the most accurate locations for LPG sensors in an underground garage for vehicles powered with LPG. First, the three-dimensional geometry of an underground garage under a multi-family building was reconstructed. Next, two types of ventilation, jet and duct, were considered, and different sources of LPG leakage were assumed. Then, the Ansys Fluent software was applied as a solver, and the same initial value of released LPG (5 kg) was assumed. As a simplification, and to avoid the simulation of choked outflow, the emission from a large area was adopted. The results showed stagnation areas for duct ventilation in which gas remained for both the jet and duct ventilation. Moreover, it was observed that the analyzed gas would gather in the depressions of the ground in the underground garage, for example in drain grates, which may create a hazardous zone for the users of the facility. Additionally, it was observed that for jet ventilation, turbulence appearance sometimes generated differentiated gas in an undesirable direction. The simulation also showed that for blowing ventilation around the garage, and for higher LPG leakage, a higher cloud of gas that increased probability of ignition and LPG explosion was formed. Meanwhile, for jet ventilation, a very low concentration of LPG in the garage was noticed. After 35 s, LPG concentration was lower than the upper explosive limit. Therefore, during the LPG leakage in an underground garage, jet ventilation was more efficient in decreasing LPG gas to the non-explosive values

    Analysis of the effectiveness of decontamination fluids on the level of biological contamination of firefighter suits

    Get PDF
    The scope of tasks of chemical and ecological rescue procedures includes prevention of terrorist attacks with biological weapons. After each action, firefighters are obliged to clean and disinfect their outfits to prevent the potential spreading of harmful microorganisms. This study aimed to analyze the effectiveness of decontamination fluids used to disinfect firefighter’s suits. Two types of clothes were analyzed: special combat clothing (NOMEX), and the heavy gas-tight chemical type 1a suit. Swabbed places were cut out and sterilized mechanically using detergent and alcohol. Each time, smears were made on sterile glass, fixed in pure ethanol and stained using the Gram method. After this, the staining samples were air dried and photographed under a light microscope at magnification 1000×. Each smear was made in triplicate and the relative number of stained microorganisms was analyzed using ImageJ software. The results showed that detergent significantly decreased the number of pathogens in the chest area on the NOMEX suit and the type 1a-gas-tight clothing and was more effective than alcohol, especially in case of the NOMEX suit. In conclusion, the detergent was more efficient in decontaminating the NOMEX outfit than the heavy gas-tight clothing, whose surface was better cleaned by the alcohol

    The Role of Endothelin-1 and Endothelin Receptor Antagonists in Inflammatory Response and Sepsis

    Get PDF
    corecore