45 research outputs found
Contraction blockers for graphs with forbidden induced paths.
We consider the following problem: can a certain graph parameter of some given graph be reduced by at least d for some integer d via at most k edge contractions for some given integer k? We examine three graph parameters: the chromatic number, clique number and independence number. For each of these graph parameters we show that, when d is part of the input, this problem is polynomial-time solvable on P4-free graphs and NP-complete as well as W[1]-hard, with parameter d, for split graphs. As split graphs form a subclass of P5-free graphs, both results together give a complete complexity classification for Pâ-free graphs. The W[1]-hardness result implies that it is unlikely that the problem is fixed-parameter tractable for split graphs with parameter d. But we do show, on the positive side, that the problem is polynomial-time solvable, for each parameter, on split graphs if d is fixed, i.e., not part of the input. We also initiate a study into other subclasses of perfect graphs, namely cobipartite graphs and interval graphs
Graph coloring with cardinality constraints on the neighborhoods
AbstractExtensions and variations of the basic problem of graph coloring are introduced. The problem consists essentially in finding in a graph G a k-coloring, i.e., a partition V1,âŠ,Vk of the vertex set of G such that, for some specified neighborhood NÌ(v) of each vertex v, the number of vertices in NÌ(v)â©Vi is (at most) a given integer hvi. The complexity of some variations is discussed according to NÌ(v), which may be the usual neighbors, or the vertices at distance at most 2, or the closed neighborhood of v (v and its neighbors). Polynomially solvable cases are exhibited (in particular when G is a special tree)
Nominal Unification of Higher Order Expressions with Recursive Let
A sound and complete algorithm for nominal unification of higher-order
expressions with a recursive let is described, and shown to run in
non-deterministic polynomial time. We also explore specializations like nominal
letrec-matching for plain expressions and for DAGs and determine the complexity
of corresponding unification problems.Comment: Pre-proceedings paper presented at the 26th International Symposium
on Logic-Based Program Synthesis and Transformation (LOPSTR 2016), Edinburgh,
Scotland UK, 6-8 September 2016 (arXiv:1608.02534
Reducing the clique and chromatic number via edge contractions and vertex deletions
We consider the following problem: can a certain graph parameter of some given graph G be reduced by at least d, for some integer d, via at most k graph operations from some specified set S, for some given integer k? As graph parameters we take the chromatic number and the clique number. We let the set S consist of either an edge contraction or a vertex deletion. As all these problems are NP-complete for general graphs even if d is fixed, we restrict the input graph G to some special graph class. We continue a line of research that considers these problems for subclasses of perfect graphs, but our main results are full classifications, from a computational complexity point of view, for graph classes characterized by forbidding a single induced connected subgraph H
Contraction blockers for graphs with forbidden induced paths
We consider the following problem: can a certain graph parameter of some given graph be reduced by at least d for some integer d via at most k edge contractions for some given integer k? We examine three graph parameters: the chromatic number, clique number and independence number. For each of these graph parameters we show that, when d is part of the input, this problem is polynomial-time solvable on P4-free graphs and NP-complete as well as W[1]-hard, with parameter d, for split graphs. As split graphs form a subclass of P5-free graphs, both results together give a complete complexity classification for Pâ-free graphs. The W[1]-hardness result implies that it is unlikely that the problem is fixed-parameter tractable for split graphs with parameter d. But we do show, on the positive side, that the problem is polynomial-time solvable, for each parameter, on split graphs if d is fixed, i.e., not part of the input. We also initiate a study into other subclasses of perfect graphs, namely cobipartite graphs and interval graphs
Blocking independent sets for H-free graphs via edge contractions and vertex deletions.
Let d and k be two given integers, and let G be a graph. Can we reduce the independence number of G by at least d via at most k graph operations from some fixed set S? This problem belongs to a class of so-called blocker problems. It is known to be co-NP-hard even if S consists of either an edge contraction or a vertex deletion. We further investigate its computational complexity under these two settings:
we give a sufficient condition on a graph class for the vertex deletion variant to be co-NP-hard even if d=k=1d=k=1 ;
in addition we prove that the vertex deletion variant is co-NP-hard for triangle-free graphs even if d=k=1d=k=1 ;
we prove that the edge contraction variant is NP-hard for bipartite graphs but linear-time solvable for trees.
By combining our new results with known ones we are able to give full complexity classifications for both variants restricted to H-free graphs.
D. Paulusma received support from EPSRC (EP/K025090/1)