7 research outputs found

    Non-singlet Baryons in Less Supersymmetric Backgrounds

    Get PDF
    We analyze the holographic description of non-singlet baryons in various backgrounds with reduced supersymmetries and/or confinement. We show that they exist in all AdS_5xY_5 backgrounds with Y_5 an Einstein manifold bearing five form flux, for a number of quarks 5N/8< k< N, independently on the supersymmetries preserved. This result still holds for gamma_i deformations. In the confining Maldacena-Nunez background non-singlet baryons also exist, although in this case the interval for the number of quarks is reduced as compared to the conformal case. We generalize these configurations to include a non-vanishing magnetic flux such that a complementary microscopical description can be given in terms of lower dimensional branes expanding into fuzzy baryons. This description is a first step towards exploring the finite 't Hooft coupling region.Comment: 36 Pages, 1 figure, Latex, v2: few minor changes, JHEP versio

    ABJM Baryon Stability and Myers effect

    Get PDF
    We consider magnetically charged baryon vertex like configurations in AdS^4 X CP^3 with a reduced number of quarks l. We show that these configurations are solutions to the classical equations of motion and are stable beyond a critical value of l. Given that the magnetic flux dissolves D0-brane charge it is possible to give a microscopical description in terms of D0-branes expanding into fuzzy CP^n spaces by Myers dielectric effect. Using this description we are able to explore the region of finite 't Hooft coupling.Comment: 29 pages, Latex; minor changes; version to appear in JHE

    Dissection of Pol II Trigger Loop Function and Pol II Activity–Dependent Control of Start Site Selection In Vivo

    Get PDF
    Structural and biochemical studies have revealed the importance of a conserved, mobile domain of RNA Polymerase II (Pol II), the Trigger Loop (TL), in substrate selection and catalysis. The relative contributions of different residues within the TL to Pol II function and how Pol II activity defects correlate with gene expression alteration in vivo are unknown. Using Saccharomyces cerevisiae Pol II as a model, we uncover complex genetic relationships between mutated TL residues by combinatorial analysis of multiply substituted TL variants. We show that in vitro biochemical activity is highly predictive of in vivo transcription phenotypes, suggesting direct relationships between phenotypes and Pol II activity. Interestingly, while multiple TL residues function together to promote proper transcription, individual residues can be separated into distinct functional classes likely relevant to the TL mechanism. In vivo, Pol II activity defects disrupt regulation of the GTP-sensitive IMD2 gene, explaining sensitivities to GTP-production inhibitors, but contrasting with commonly cited models for this sensitivity in the literature. Our data provide support for an existing model whereby Pol II transcriptional activity provides a proxy for direct sensing of NTP levels in vivo leading to IMD2 activation. Finally, we connect Pol II activity to transcription start site selection in vivo, implicating the Pol II active site and transcription itself as a driver for start site scanning, contravening current models for this process

    Fluid challenges in intensive care: the FENICE study A global inception cohort study

    Get PDF
    Fluid challenges (FCs) are one of the most commonly used therapies in critically ill patients and represent the cornerstone of hemodynamic management in intensive care units. There are clear benefits and harms from fluid therapy. Limited data on the indication, type, amount and rate of an FC in critically ill patients exist in the literature. The primary aim was to evaluate how physicians conduct FCs in terms of type, volume, and rate of given fluid; the secondary aim was to evaluate variables used to trigger an FC and to compare the proportion of patients receiving further fluid administration based on the response to the FC.This was an observational study conducted in ICUs around the world. Each participating unit entered a maximum of 20 patients with one FC.2213 patients were enrolled and analyzed in the study. The median [interquartile range] amount of fluid given during an FC was 500 ml (500-1000). The median time was 24 min (40-60 min), and the median rate of FC was 1000 [500-1333] ml/h. The main indication for FC was hypotension in 1211 (59 %, CI 57-61 %). In 43 % (CI 41-45 %) of the cases no hemodynamic variable was used. Static markers of preload were used in 785 of 2213 cases (36 %, CI 34-37 %). Dynamic indices of preload responsiveness were used in 483 of 2213 cases (22 %, CI 20-24 %). No safety variable for the FC was used in 72 % (CI 70-74 %) of the cases. There was no statistically significant difference in the proportion of patients who received further fluids after the FC between those with a positive, with an uncertain or with a negatively judged response.The current practice and evaluation of FC in critically ill patients are highly variable. Prediction of fluid responsiveness is not used routinely, safety limits are rarely used, and information from previous failed FCs is not always taken into account

    Fungal Pre-mRNA 3′-End Processing

    No full text
    3' end processing of messenger RNAs (mRNAs) is not only an essential step in eukaryotic gene expression, but it also impacts many other aspects of mRNA maturation and decay. A large portion of eukaryotic genes produce multiple mRNAs with different 3' ends through alternative cleavage/polyadenylation (APA). mRNA 3' processing and especially APA has been increasingly recognized as an important mechanism for gene regulation. Much of what we currently know about eukaryotic mRNA 3' processing came from studies using the genetically tractable yeast systems. Here we review the fungal mRNA 3' processing system by describing both the evolutionarily conserved mechanisms as well as the fungus-specific features
    corecore