3,428 research outputs found

    Half metallic digital ferromagnetic heterostructure composed of a δ\delta-doped layer of Mn in Si

    Get PDF
    We propose and investigate the properties of a digital ferromagnetic heterostructure (DFH) consisting of a δ\delta-doped layer of Mn in Si, using \textit{ab initio} electronic-structure methods. We find that (i) ferromagnetic order of the Mn layer is energetically favorable relative to antiferromagnetic, and (ii) the heterostructure is a two-dimensional half metallic system. The metallic behavior is contributed by three majority-spin bands originating from hybridized Mn-dd and nearest-neighbor Si-pp states, and the corresponding carriers are responsible for the ferromagnetic order in the Mn layer. The minority-spin channel has a calculated semiconducting gap of 0.25 eV. Analysis of the total and partial densities of states, band structure, Fermi surfaces and associated charge density reveals the marked two-dimensional nature of the half metallicity. The band lineup is found to be favorable for retaining the half metal character to near the Curie temperature (TCT_{C}). Being Si based and possibly having a high TCT_{C} as suggested by an experiment on dilutely doped Mn in Si, the heterostructure may be of special interest for integration into mature Si technologies for spintronic applications.Comment: 4 pages, 4 figures, Revised version, to appear in Phys. Rev. Let

    Effect of Local Electron-Electron Correlation in Hydrogen-like Impurities in Ge

    Get PDF
    We have studied the electronic and local magnetic structure of the hydrogen interstitial impurity at the tetrahedral site in diamond-structure Ge, using an empirical tight binding + dynamical mean field theory approach because within the local density approximation (LDA) Ge has no gap. We first establish that within LDA the 1s spectral density bifurcates due to entanglement with the four neighboring sp3 antibonding orbitals, providing an unanticipated richness of behavior in determining under what conditions a local moment hyperdeep donor or Anderson impurity will result, or on the other hand a gap state might appear. Using a supercell approach, we show that the spectrum, the occupation, and the local moment of the impurity state displays a strong dependence on the strength of the local on-site Coulomb interaction U, the H-Ge hopping amplitude, the depth of the bare 1s energy level epsilon_H, and we address to some extent the impurity concentration dependence. In the isolated impurity, strong interaction regime a local moment emerges over most of the parameter ranges indicating magnetic activity, and spectral density structure very near (or in) the gap suggests possible electrical activity in this regime.Comment: 9 pages, 5 figure

    Orbital-quenching-induced magnetism in Ba_2NaOsO_6

    Full text link
    The double perovskite \bnoo with heptavalent Os (d1d^1) is observed to remain in the ideal cubic structure ({\it i.e.} without orbital ordering) despite single occupation of the t2gt_{2g} orbitals, even in the ferromagnetically ordered phase below 6.8 K. Analysis based on the {\it ab initio} dispersion expressed in terms of an Os t2gt_{2g}-based Wannier function picture, spin-orbit coupling, Hund's coupling, and strong Coulomb repulsion shows that the magnetic OsO6_6 cluster is near a moment-less condition due to spin and orbital compensation. Quenching (hybridization) then drives the emergence of the small moment. This compensation, unprecedented in transition metals, arises in a unified picture that accounts for the observed Mott insulating behavior.Comment: in press at Europhysics Letter

    Laboratory measurements and theoretical calculations of O_2 A band electric quadrupole transitions

    Get PDF
    Frequency-stabilized cavity ring-down spectroscopy was utilized to measure electric quadrupole transitions within the ^(16)O_2 A band, b^1Σ^+_g ← X^3Σ^-_g(0,0). We report quantitative measurements (relative uncertainties in intensity measurements from 4.4% to 11%) of nine ultraweak transitions in the ^NO, ^PO, ^RS, and ^TS branches with line intensities ranging from 3×10^(−30) to 2×10^(−29) cm molec.^(−1). A thorough discussion of relevant noise sources and uncertainties in this experiment and other cw-cavity ring-down spectrometers is given. For short-term averaging (t<100 s), we estimate a noise-equivalent absorption of 2.5×10^(−10) cm^(−1) Hz^(−1/2). The detection limit was reduced further by co-adding up to 100 spectra to yield a minimum detectable absorption coefficient equal to 1.8×10^(−11) cm^(−1), corresponding to a line intensity of ~2.5×10^(−31) cm molec.^(−1). We discuss calculations of electric quadrupole line positions based on a simultaneous fit of the ground and upper electronic state energies which have uncertainties <3 MHz, and we present calculations of electric quadrupole matrix elements and line intensities. The electric quadrupole line intensity calculations and measurements agreed on average to 5%, which is comparable to our average experimental uncertainty. The calculated electric quadrupole band intensity was 1.8(1)×10^(−27) cm molec.−1 which is equal to only ~8×10^(−6) of the magnetic dipole band intensity

    Superconductivity and Lattice Instability in Compressed Lithium from Fermi Surface Hot Spots

    Full text link
    The highest superconducting temperature Tc_c observed in any elemental metal (Li with Tc_c ~ 20 K at pressure P ~ 40 GPa) is shown to arise from critical (formally divergent) electron-phonon coupling to the transverse T1_1 phonon branch along intersections of Kohn anomaly surfaces with the Fermi surface. First principles linear response calculations of the phonon spectrum and spectral function α2F(ω)\alpha^2 F(\omega) reveal (harmonic) instability already at 25 GPa. Our results imply that the fcc phase is anharmonically stabilized in the 25-38 GPa range.Comment: 4 pages, 3 embedded figure

    Implications of the B20 Crystal Structure for the Magneto-electronic Structure of MnSi

    Full text link
    Due to increased interest in the unusual magnetic and transport behavior of MnSi and its possible relation to its crystal structure (B20) which has unusual coordination and lacks inversion symmetry, we provide a detailed analysis of the electronic and magnetic structure of MnSi. The non-symmorphic P2_13 spacegroup leads to unusual fourfold degenerate states at the zone corner R point, as well as ``sticking'' of pairs of bands throughout the entire Brillouin zone surface. The resulting Fermi surface acquires unusual features as a result of the band sticking. For the ferromagnetic system (neglecting the long wavelength spin spiral) with the observed moment of 0.4 \mu_B/Mn, one of the fourfold levels at R in the minority bands falls at the Fermi energy (E_F), and a threefold majority level at k=0 also falls at E_F. The band sticking and presence of bands with vanishing velocity at E_F imply an unusually large phase space for long wavelength, low energy interband transitions that will be important for understanding the unusual resistivity and far infrared optical behavior.Comment: Nine two-column pages with eight figures include

    Static versus dynamic fluctuations in the one-dimensional extended Hubbard model

    Full text link
    The extended Hubbard Hamiltonian is a widely accepted model for uncovering the effects of strong correlations on the phase diagram of low-dimensional systems, and a variety of theoretical techniques have been applied to it. In this paper the world-line quantum Monte Carlo method is used to study spin, charge, and bond order correlations of the one-dimensional extended Hubbard model in the presence of coupling to the lattice. A static alternating lattice distortion (the ionic Hubbard model) leads to enhanced charge density wave correlations at the expense of antiferromagnetic order. When the lattice degrees of freedom are dynamic (the Hubbard-Holstein model), we show that a similar effect occurs even though the charge asymmetry must arise spontaneously. Although the evolution of the total energy with lattice coupling is smooth, the individual components exhibit sharp crossovers at the phase boundaries. Finally, we observe a tendency for bond order in the region between the charge and spin density wave phases.Comment: Corrected typos. (10 pages, 9 figures

    Magnetic Coupling Between Non-Magnetic Ions: Eu3+ in EuN and EuP

    Full text link
    We consider the electronic structure of, and magnetic exchange (spin) interactions between, nominally nonmagnetic Eu^3+ ions (4f^6, S=3, L=3, J=0) within the context of the rocksalt structure compounds EuN and EuP. Both compounds are ionic [Eu^3+; N^3- and P^3-] semimetals similar to isovalent GdN. Treating the spin polarization within the 4f shell, and then averaging consistent with the J=0 configuration, we estimate semimetallic band overlaps (Eu 5d with pnictide 2p or 3p) of ~0.1 eV (EuN) and ~1.0 eV (EuP) that increase (become more metallic) with pressure. The calculated bulk modulus is 130 (86) GPa for EuN (EuP). Exchange (spin-spin) coupling calculated from correlated band theory is small and ferromagnetic in sign for EuN, increasing in magnitude with pressure. Conversely, the exchange coupling is antiferromagnetic in sign for EuP and is larger in magnitude, but decreases with compression. Study of a two-site model with S_1*S_2 coupling within the J=0,1 spaces of each ion illustrates the dependence of the magnetic correlation functions on the model parameters, and indicates that the spin coupling is sufficient to alter the Van Vleck susceptibility. We outline a scenario of a spin-correlation transition in a lattice of S=3, L=3, J=0 nonmagnetic ions
    corecore