8 research outputs found

    Wild genius - domestic fool? Spatial learning abilities of wild and domestic guinea pigs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Domestic animals and their wild relatives differ in a wide variety of aspects. The process of domestication of the domestic guinea pig (<it>Cavia aperea </it>f. <it>porcellus</it>), starting at least 4500 years ago, led to changes in the anatomy, physiology, and behaviour compared with their wild relative, the wild cavy, <it>Cavia aperea</it>. Although domestic guinea pigs are widely used as a laboratory animal, learning and memory capabilities are often disregarded as being very scarce. Even less is known about learning and memory of wild cavies. In this regard, one striking domestic trait is a reduction in relative brain size, which in the domesticated form of the guinea pig amounts to 13%. However, the common belief, that such a reduction of brain size in the course of domestication of different species is accomplished by less learning capabilities is not at all very well established in the literature. Indeed, domestic animals might also even outperform their wild conspecifics taking advantage of their adaptation to a man-made environment.</p> <p>In our study we compared the spatial learning abilities of wild and domestic guinea pigs. We expected that the two forms are different regarding their learning performance possibly related to the process of domestication. Therefore wild cavies as well as domestic guinea pigs of both sexes, aged 35 to 45 days, were tested in the Morris water maze to investigate their ability of spatial learning.</p> <p>Results</p> <p>Both, wild cavies and domestic guinea pigs were able to learn the task, proving the water maze to be a suitable test also for wild cavies. Regarding the speed of learning, male as well as female domestic guinea pigs outperformed their wild conspecifics significantly. Interestingly, only domestic guinea pigs showed a significant spatial association of the platform position, while other effective search strategies were used by wild cavies.</p> <p>Conclusion</p> <p>The results demonstrate that domestic guinea pigs do not at all perform worse than their wild relatives in tests of spatial learning abilities. Yet, the contrary seems to be true. Hence, artificial selection and breeding did not lead to a cognitive decline but rather to an adaptation to man-made environment that allows solving the task more efficiently.</p

    Evaluation of the collagen-boosting effects of a Moldavian dragonhead extract

    No full text
    Skin aging is a natural process that is influenced by various intrinsic and extrinsic factors such as UV radiation, pollution, oxidative stress, or an unhealthy lifestyle. Premature skin aging affects millions of people worldwide, but treatment options are limited and often of invasive nature. Therefore, the demand for alternative natural and safe products for nutraceutical use is increasing. Moldavian dragonhead is known for its high content in flavonoid glucuronides and its antioxidative effects. However, its effect on skin appearance parameters is unknown to date. Our in-vitro study showed that treatment of mouse C2C12 cells with Moldavian dragonhead extract activates the innate longevity pathway involving the signaling kinase AMPK and the transcription factor FOXO1. In vivo, Moldavian dragonhead extract had a collagen-boosting effect preserving a youthful collagen expression and mass during aging in Caenorhabditis elegans. Moreover, in humans, daily food supplementation with 200 mg Moldavian dragonhead dry extract (DracoBelleTM Nu) for eight weeks in an open pilot trial significantly increased skin moisturization and elasticity by 14.4 % and 6.7 %, respectively. Furthermore, skin density was increased as shown by ultrasound visualization. There were no reports of adverse events during the study period. We, therefore, conclude that Moldavian dragonhead extract presents a safe and effective treatment option for (photo) aged skin

    A microbiota-root-shoot circuit favours Arabidopsis growth over defence under suboptimal light

    Get PDF
    A synthetic root microbial community rescues weak growth under low light and enhances immunity in Arabidopsis. Transcription factor MYC2 regulates both this coordination between rhizosphere and shoots and the growth/defence trade-off under low light conditions. Bidirectional root-shoot signalling is probably key in orchestrating stress responses and ensuring plant survival. Here, we show that Arabidopsis thaliana responses to microbial root commensals and light are interconnected along a microbiota-root-shoot axis. Microbiota and light manipulation experiments in a gnotobiotic plant system reveal that low photosynthetically active radiation perceived by leaves induces long-distance modulation of root bacterial communities but not fungal or oomycete communities. Reciprocally, microbial commensals alleviate plant growth deficiency under low photosynthetically active radiation. This growth rescue was associated with reduced microbiota-induced aboveground defence responses and altered resistance to foliar pathogens compared with the control light condition. Inspection of a set of A. thaliana mutants reveals that this microbiota- and light-dependent growth-defence trade-off is directly explained by belowground bacterial community composition and requires the host transcriptional regulator MYC2. Our work indicates that aboveground stress responses in plants can be modulated by signals from microbial root commensals

    Genetic determinants of endophytism in the Arabidopsis root mycobiome

    Get PDF
    Plant roots host diverse fungal communities that affect plant health. Here, Mesny et al. use comparative genomics and transcriptomics of fungal isolates from the Arabidopsis thaliana root mycobiota, together with root colonization assays, to identify genetic determinants of endophytism.The roots of Arabidopsis thaliana host diverse fungal communities that affect plant health and disease states. Here, we sequence the genomes of 41 fungal isolates representative of the A. thaliana root mycobiota for comparative analysis with other 79 plant-associated fungi. Our analyses indicate that root mycobiota members evolved from ancestors with diverse lifestyles and retain large repertoires of plant cell wall-degrading enzymes (PCWDEs) and effector-like small secreted proteins. We identify a set of 84 gene families associated with endophytism, including genes encoding PCWDEs acting on xylan (family GH10) and cellulose (family AA9). Transcripts encoding these enzymes are also part of a conserved transcriptional program activated by phylogenetically-distant mycobiota members upon host contact. Recolonization experiments with individual fungi indicate that strains with detrimental effects in mono-association with the host colonize roots more aggressively than those with beneficial activities, and dominate in natural root samples. Furthermore, we show that the pectin-degrading enzyme family PL1_7 links aggressiveness of endophytic colonization to plant health

    Genetic determinants of endophytism in the Arabidopsis root mycobiome

    No full text
    Plant roots host diverse fungal communities that affect plant health. Here, Mesny et al. use comparative genomics and transcriptomics of fungal isolates from the Arabidopsis thaliana root mycobiota, together with root colonization assays, to identify genetic determinants of endophytism. The roots of Arabidopsis thaliana host diverse fungal communities that affect plant health and disease states. Here, we sequence the genomes of 41 fungal isolates representative of the A. thaliana root mycobiota for comparative analysis with other 79 plant-associated fungi. Our analyses indicate that root mycobiota members evolved from ancestors with diverse lifestyles and retain large repertoires of plant cell wall-degrading enzymes (PCWDEs) and effector-like small secreted proteins. We identify a set of 84 gene families associated with endophytism, including genes encoding PCWDEs acting on xylan (family GH10) and cellulose (family AA9). Transcripts encoding these enzymes are also part of a conserved transcriptional program activated by phylogenetically-distant mycobiota members upon host contact. Recolonization experiments with individual fungi indicate that strains with detrimental effects in mono-association with the host colonize roots more aggressively than those with beneficial activities, and dominate in natural root samples. Furthermore, we show that the pectin-degrading enzyme family PL1_7 links aggressiveness of endophytic colonization to plant health
    corecore