411 research outputs found

    Critical interfaces and duality in the Ashkin Teller model

    Full text link
    We report on the numerical measures on different spin interfaces and FK cluster boundaries in the Askhin-Teller (AT) model. For a general point on the AT critical line, we find that the fractal dimension of a generic spin cluster interface can take one of four different possible values. In particular we found spin interfaces whose fractal dimension is d_f=3/2 all along the critical line. Further, the fractal dimension of the boundaries of FK clusters were found to satisfy all along the AT critical line a duality relation with the fractal dimension of their outer boundaries. This result provides a clear numerical evidence that such duality, which is well known in the case of the O(n) model, exists in a extended CFT.Comment: 5 pages, 4 figure

    Scale Invariance and Self-averaging in disordered systems

    Get PDF
    In a previous paper we found that in the random field Ising model at zero temperature in three dimensions the correlation length is not self-averaging near the critical point and that the violation of self-averaging is maximal. This is due to the formation of bound states in the underlying field theory. We present a similar study for the case of disordered Potts and Ising ferromagnets in two dimensions near the critical temperature. In the random Potts model the correlation length is not self-averaging near the critical temperature but the violation of self-averaging is weaker than in the random field case. In the random Ising model we find still weaker violations of self-averaging and we cannot rule out the possibility of the restoration of self-averaging in the infinite volume limit.Comment: 7 pages, 4 ps figure

    Numerical study on Schramm-Loewner Evolution in nonminimal conformal field theories

    Get PDF
    The Schramm-Loewner evolution (SLE) is a powerful tool to describe fractal interfaces in 2D critical statistical systems. Yet the application of SLE is well established for statistical systems described by quantum field theories satisfying only conformal invariance, the so called minimal conformal field theories (CFTs). We consider interfaces in Z(N) spin models at their self-dual critical point for N=4 and N=5. These lattice models are described in the continuum limit by non-minimal CFTs where the role of a Z_N symmetry, in addition to the conformal one, should be taken into account. We provide numerical results on the fractal dimension of the interfaces which are SLE candidates for non-minimal CFTs. Our results are in excellent agreement with some recent theoretical predictions.Comment: 4 pages, 2 figures, v2: typos corrected, published versio

    Critical interfaces of the Ashkin-Teller model at the parafermionic point

    Get PDF
    We present an extensive study of interfaces defined in the Z_4 spin lattice representation of the Ashkin-Teller (AT) model. In particular, we numerically compute the fractal dimensions of boundary and bulk interfaces at the Fateev-Zamolodchikov point. This point is a special point on the self-dual critical line of the AT model and it is described in the continuum limit by the Z_4 parafermionic theory. Extending on previous analytical and numerical studies [10,12], we point out the existence of three different values of fractal dimensions which characterize different kind of interfaces. We argue that this result may be related to the classification of primary operators of the parafermionic algebra. The scenario emerging from the studies presented here is expected to unveil general aspects of geometrical objects of critical AT model, and thus of c=1 critical theories in general.Comment: 15 pages, 3 figure

    Sepsis target validation for repurposing and combining complement and immune checkpoint inhibition therapeutics

    Get PDF
    Introduction: Sepsis is a disease that occurs due to an adverse immune response to infection by bacteria, viruses and fungi and is the leading pathway to death by infection. The hallmarks for maladapted immune reactions in severe sepsis, which contribute to multiple organ failure and death, are bookended by the exacerbated activation of the complement system to protracted T-cell dysfunction states orchestrated by immune checkpoint control. Despite major advances in our understanding of the condition, there remains to be either a definitive test or an effective therapeutic intervention. Areas covered: The authors consider a combinational drug therapy approach using new biologics, and mathematical modeling for predicting patient responses, in targeting innate and adaptive immune mediators underlying sepsis. Special consideration is given for emerging complement and immune checkpoint inhibitors that may be repurposed for sepsis treatment. Expert opinion: In order to overcome the challenges inherent to finding new therapies for the complex dysregulated host response to infection that drives sepsis, it is necessary to move away from monotherapy and promote precision for personalized combinatory therapies. Notably, combinatory therapy should be guided by predictive systems models of the immune-metabolic characteristics of an individual’s disease progression

    Non-compact local excitations in spin glasses

    Full text link
    We study numerically the local low-energy excitations in the 3-d Edwards-Anderson model for spin glasses. Given the ground state, we determine the lowest-lying connected cluster of flipped spins with a fixed volume containing one given spin. These excitations are not compact, having a fractal dimension close to two, suggesting an analogy with lattice animals. Also, their energy does not grow with their size; the associated exponent is slightly negative whereas the one for compact clusters is positive. These findings call for a modification of the basic hypotheses underlying the droplet model.Comment: 7 pages, LaTex, discussion on stability clarifie

    Displacement length and velocity of tagged logs in the tagliamento river

    Get PDF

    Weak Randomness for large q-State Potts models in Two Dimensions

    Full text link
    We have studied the effect of weak randomness on q-state Potts models for q > 4 by measuring the central charges of these models using transfer matrix methods. We obtain a set of new values for the central charges and then show that some of these values are related to one another by a factorization law.Comment: 8 pages, Latex, no figure

    Nonequilibrium critical dynamics of the bi-dimensional ±J\pm J Ising model

    Full text link
    The ±J\pm J Ising model is a simple frustrated spin model, where the exchange couplings independently take the discrete value J-J with probability pp and +J+J with probability 1p1-p. It is especially appealing due to its connection to quantum error correcting codes. Here, we investigate the nonequilibrium critical behavior of the bi-dimensional ±J\pm J Ising model, after a quench from different initial conditions to a critical point Tc(p)T_c(p) on the paramagnetic-ferromagnetic (PF) transition line, especially, above, below and at the multicritical Nishimori point (NP). The dynamical critical exponent zcz_c seems to exhibit non-universal behavior for quenches above and below the NP, which is identified as a pre-asymptotic feature due to the repulsive fixed point at the NP. Whereas, for a quench directly to the NP, the dynamics reaches the asymptotic regime with zc6.02(6)z_c \simeq 6.02(6). We also consider the geometrical spin clusters (of like spin signs) during the critical dynamics. Each universality class on the PF line is uniquely characterized by the stochastic Loewner evolution (SLE) with corresponding parameter κ\kappa. Moreover, for the critical quenches from the paramagnetic phase, the model, irrespective of the frustration, exhibits an emergent critical percolation topology at the large length scales.Comment: 26 pages, 10 figure

    Wang-Landau study of the random bond square Ising model with nearest- and next-nearest-neighbor interactions

    Full text link
    We report results of a Wang-Landau study of the random bond square Ising model with nearest- (JnnJ_{nn}) and next-nearest-neighbor (JnnnJ_{nnn}) antiferromagnetic interactions. We consider the case R=Jnn/Jnnn=1R=J_{nn}/J_{nnn}=1 for which the competitive nature of interactions produces a sublattice ordering known as superantiferromagnetism and the pure system undergoes a second-order transition with a positive specific heat exponent α\alpha. For a particular disorder strength we study the effects of bond randomness and we find that, while the critical exponents of the correlation length ν\nu, magnetization β\beta, and magnetic susceptibility γ\gamma increase when compared to the pure model, the ratios β/ν\beta/\nu and γ/ν\gamma/\nu remain unchanged. Thus, the disordered system obeys weak universality and hyperscaling similarly to other two-dimensional disordered systems. However, the specific heat exhibits an unusually strong saturating behavior which distinguishes the present case of competing interactions from other two-dimensional random bond systems studied previously.Comment: 9 pages, 3 figures, version as accepted for publicatio
    corecore