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Numerical study on Schramm-Loewner Evolution in nonminimal conformal field

theories.
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The Schramm-Loewner evolution (SLE) is a powerful tool to describe fractal interfaces in 2D
critical statistical systems, yet the application of SLE is well established for statistical systems
described by quantum field theories satisfying only conformal invariance, the so-called minimal
conformal field theories (CFTs). We consider interfaces in Z(N) spin models at their self-dual
critical point for N = 4 and N = 5. These lattice models are described in the continuum limit by
nonminimal CFTs where the role of a ZN symmetry, in addition to the conformal one, should be
taken into account. We provide numerical results on the fractal dimension of the interfaces which
are SLE candidates for nonminimal CFTs. Our results are in excellent agreement with some recent
theoretical predictions.

Introduction— The description of phase transitions in
terms of geometrical objects is a long-standing problem
[1] which has provided a different conceptual framework
to study critical phenomena. In this respect, the two
dimensional (2D) systems are particularly interesting as
an extensive variety of theoretical tools is available. In
particular, the approach based on the so called Schramm-
Loewner evolutions (SLEs), which are growth processes
defined via stochastic evolution of conformal maps, has
been proven an efficient tool to study fractal shapes in
2D critical statistical systems and unveiled geometrical
properties of critical systems that were missing before
[2, 3, 4].

The SLE approach has been applied to different prob-
lems as the critical percolation [5], the domain bound-
aries in magnetic systems at the phase transition [4] or
the 2D turbulence [6]. The theoretical ideas behind this
approach often combines the probability theory, the com-
plex analysis and the quantum field theory. The confor-
mal field theories (CFTs) play a key role for understand-
ing the universal properties of 2D systems [7]. If SLEs
consider directly the geometrical characterization of non-
local objects, the CFTs focus on the computation of the
correlation function of local variables by fully exploiting
the symmetries of the system under consideration. The
first solutions of CFTs, the so called minimal CFTs, were
constructed by demanding the correlation functions to
satisfy the conformal symmetry alone [8]. So far the SLE
interfaces have been identified and studied in statisti-
cal models (critical percolation, self-avoiding walks, loop
erased random walks, etc.), which are described in the
continuum limit by minimal CFTs. One of the most im-
portant results is the relation between the SLEs and the
minimal CFTs which has been worked out in [9, 10, 11].
Yet, there are other solutions of quantum fields theories
which satisfy, in addition to the conformal symmetry, ad-
ditional symmetries. These theories, called non-minimal
CFTs, describe many condensed matter and statistical
problems characterized in general by some internal sym-

metry such as, e.g., the SU(2) spin-rotational symmetry
in spin chains [12] or replica permutational symmetry
in disordered systems [13, 14]. The connection between
SLEs and non-minimal CFTs has been first addressed in
[15, 16], where the relation between stochastic evolutions
and superconformal field theory was investigated. More
recently, the connection between SLE and Wess-Zumino-
Witten models, i.e. CFTs with additional Lie-group sym-
metries, has been studied by very different approaches
[17, 18]. These results concern mainly some particular
properties of the CFTs under consideration which gener-
alize the ones on which the link between SLE and mini-
mal CFT is based. However, an interpretation in terms
of the continuum limit of lattice interfaces, necessary to
give the SLE a physical meaning, was missing. In this
respect, an interesting model is the Z(N) spin model
(defined below) [19], i.e. a lattice of spins which can
take N -values. The nearest-neighbor interaction defin-
ing the model is invariant under a cyclic permutation of
the states. For N = 2 and N = 3 one finds respectively
the Ising and the three-state Potts model. The phase dia-
grams of these Z(N) spin models present self-dual critical
points [20, 21, 22] described in the continuum limit by
CFTs with ZN additional symmetries, the so called Z(N)
parafermionic theories [23]. For N ≥ 4 the parafermionic
theories are non-minimal CFTs where the role of the ZN

symmetry beside the one of conformal symmetry must be
taken into account (for N = 2, 3 these theories coincide
with minimal models). In [19] the interfaces expected to
be described in the continuum limit by SLE have been
identified on the lattice. Further, combining CFT results
with the idea, suggested in [18], of an additional stochas-
tic motion in the internal symmetry group space, the
geometric properties of these interfaces was predicted to
be described by some specific SLE process. In this letter,
we will investigate this model further and we will check
the prediction against numerical simulations for the self
dual critical Z(4) and Z(5) spin models. We present the
first numerical results on critical interfaces on the lat-
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tice which are SLE candidates for non minimal confor-
mal field theories. Before presenting the model that we
simulate and the results we give some more definitions
on SLEs.

Schramm-Loewner evolution. Here we consider chordal
SLE which describes random curves joining two bound-
ary points of a connected planar domain. For a detailed
introduction to SLE, see e.g. [2, 3, 4]. The definition of
SLE is most conveniently given in the upper half complex
plane H: it describes a fluctuating self-avoiding curve γt

which emanates from the origin (z = 0) and progresses
in a properly chosen time t. If γt is a simple curve, this
evolution is defined via the conformal map gt(z) from
the domain Ht = H/γ]0,t], i.e. the upper half plane from
which the curve is removed, to H. In the more general
case of non-simple curves, the function gt(z) produce con-
formal maps from Ht = H/Kt to H where Kt is the SLE
hull at time t. The SLE map gt(z), where the curve
parametrization t is chosen so that gt(z) = z +2t/z+ · · ·
near z = ∞, is a solution of the Loewner equation:

d

dt
gt(z) =

2

gt(z) − ξt
gt=0(z) = z, (1)

where ξt is a real valued process, ξt ∈ R, which drives the
evolution of the curve. For a system which satisfies the
Markovian and conformal invariance properties, together
with the left-right symmetry, the process ξt is shown [24]
to be proportional to a Brownian motion: E[ξt] = 0 and
E[ξtξs] = κ min(s, t). The symbol E[...] indicates the
stochastic average over the Brownian motion. The SLE
curves are fractal objects and their length, S, measured
in units of lattice spacing a, scales as a function of the
system size L as S ∼ a(L/a)df where df is the fractal
dimension given by:

df = 1 +
κ

8
. (2)

The lattice model and the interface— In this letter we
consider the model defined on a square lattice with spin
variable σj = exp i2π/Nn(j) at each site j taking N pos-
sible values, n(j) = 0, 1, · · · , N−1. The most general ZN

invariant spin model with nearest-neighbor interactions
is defined by the reduced Hamiltonian [25, 26]:

H [n] = −

⌊N/2⌋
∑

m=1

Jm

[

cos

(

2πmn

N

)

− 1

]

, (3)

where ⌊N/2⌋ denotes the integer part of N/2. The asso-
ciated partition function reads:

Z =
∑

{σ}

exp



−β
∑

<ij>

H [n(i) − n(j)]



 . (4)

For Jm = J , for all m, one recovers the N−state Potts
model, invariant under a permutational SN symmetry

while the case Jm = Jδm,1 defines the clock model [27].
For N = 2 and N = 3 these models coincide with the
Ising and the three-state Potts model respectively, while
the case N = 4 is isomorphic to the Ashkin-Teller model
[28, 29]. Defining the Boltzmann weights:

xn = exp [−βH(n)] , n = 0, 1, · · · , N − 1 , (5)

the most general ZN spin model is then described by
⌊N/2⌋ independent parameters xn as x0 = 1 and xn =
xN−n. The general properties of these models for N =
5, 6, 7 have been studied long time ago (see e.g. [30] and
references therein). The associated phase diagrams turn
out to be particularly rich as they contain in general first-
order, second-order and infinite-order phase transitions.
For all the ZN spin models it is possible to construct
a duality transformation (Kramers-Wannier duality). In
the self-dual subspace of (3)-(4), which also contains the
Potts and the clock model, the ZN spin model are critical
and completely integrable at the points [20, 21] :

x∗
0 = 1 ; x∗

n =

n−1
∏

k=0

sin
(

πk
N + π

4N

)

sin
(

π(k+1)
N − π

4N

) . (6)

There is strong evidence that the self-dual critical
points (6), referred usually as Fateev-Zamolodchikov
(FZ) points, are described in the continuum limit by
Z(N) parafermionic theories [31]. Very recently, a fur-
ther strong support for this picture has been given in [32]
where the lattice candidates for the chiral currents gen-
erating the ZN symmetry of the continuum model has
been constructed.

Consider now the model, at the self-dual critical point,
defined on a simple connected domain. By choosing some
specific boundary conditions, for each spin configuration
there is a domain wall connecting two fixed points on the
boundaries (see below for some specific example). In gen-
eral one is interested in the conformally invariant bound-
ary conditions which, for a given bulk CFT, represent a
finite set into which, under renormalization group, any
uniform boundary condition will flow [33]. The change
of conformally boundary conditions at some point of the
boundary is implemented in CFT by the insertion at that
point of a given boundary conditions changing (b.c.c.)
operator [33].

By carefully choosing the boundary conditions, the as-
sociated domain wall connecting the two points at the
boundaries is then expected to be described by mea-
sures which are invariant under conformal transforma-
tion. This can be understood from the fact that the ex-
pectation values describing the curve correspond in the
continuum limit to the correlation functions of the CFT
with the insertion of the two b.c.c operators.

In order to establish the SLE/CFT connection, the
b.c.c. operator associated to the interface have to sat-
isfy particular relations under the action of the symmetry



3

generators, the so-called null state condition. In [19] the
existence of such operators in the Z(N) parafermionic
was pointed out. One of these b.c.c. operator, inserted
at a point x0, generate the condition where the spins are
fixed to (say) the value A on the left side of x0 while
they can take the other N − 1 values B, C, .. with equal
probability on the right side (in the following we indicate
the possible values of the spins with the letters A, B · · · ).
Interpreting the b.c.c. null state condition via the in-
troduction of an additional stochastic motion in the ZN

internal space independent from (1), the geometric prop-
erty of the interface generated by such boundary condi-
tions was predicted to be described for N ≥ 4 by an SLE
with κ = 4(N + 1)/(N + 2) [19], thus the prediction

df = 1 +
1

2

(N + 1)

(N + 2)
. (7)

We will test this relation in the following.
Numerical simulation Our goal is to compute the in-

FIG. 1: Definition of the interface. The interface separetes
the spins with a fixed value connected to the bottom bound-
ary from spins with other colors. The vertical dashed line
corresponds to the test of the crossing probabilities against
Schramm’s formula. The inset contains a typical 320 × 320
configuration for the Z(5) parafermionic theory.

terface and check the validity of eq.(7) for the two cases
N = 4 and N = 5 which are the simplest lattice models
described by non-minimal conformal field theories.

We are going to compute the fractal dimension associ-
ated to the interface which crosses the lattice. To create

this interface, we impose that half of the spins on the
boundary take a fixed value A, these spins being con-
nected two by two, while the remaining boundary spins
are forced to take values different from A. Then the
interface will be the border of the geometric cluster of
spins taking a value A and connected to the spins on the
boundary with fixed spins. We show an example of such
a configuration in Fig. 1. In this figure, the spins with a
fixed value are the ones which touch the bottom bound-
ary. The interface is shown as the line which connects
the left boundary to the right boundary. Similar con-
ditions were considered in a recent work by Gamsa and
Cardy for the Q = 2 and Q = 3 Potts model case[34]
who obtained a good agreement with the prediction of
the corresponding formula (2) for the Potts models. This
type of boundary condition, which was called fluctuating
in [34], ensures that there is a unique interface which
crosses the lattice. We should also mention that on the
square lattice, the definition of the interface can contain
some ambiguities. There are different ways of dealing
with these ambiguities but the large size results will not
be affected by them[35]. For the simulation of the Z(4)
and Z(5) model at the FZ point, we employed a stan-
dard Monte Carlo algorithm. One can also use a cluster
algorithm but with the boundary conditions that we con-
sider, it turns out to be less efficient than Monte Carlo.
We performed simulations on square lattices of rectangle
geometry Lx×Ly, the interface being created along the y
direction. We simulate the size Lx = 10, 20, 30, 40, 60, 80
and 160 with for each size Ly = Lx and Ly = 3Lx. For
the larger linear size Lx that we consider, we see very
little difference between these two cases.

For Lx = Ly, we simulated 1 million independent con-
figurations up to Lx = 80 and 200000 configurations for
Lx = 160. For Ly = 3Lx, we simulated 1 million in-
dependant configurations up to Lx = 60, 300000 con-
figurations for Lx = 80 and 50000 configurations for
Lx = 160. The autocorrelation time grows as τ ≃ Lz

with z ≃ 2.2(1) for both N = 4 and N = 5 and for
the two ratios Ly/Lx that we considered. For the largest
sizes, we obtain τ ≃ 8000 for Ly = Lx while τ ≃ 15000
for Ly = 3Ly for both N = 4 and N = 5.

Fig. 2 contains our main results. In this figure, one

shows the exponent df obtained by doing a fit of S ≃ L
df
x

with data in the range Lx = [Lmin, · · · , 160]. For
N = 4, the measured value moves close the predicted
value df = 1 + 5/12. The deviation for the larger size
that we can measure is of order 1/4 % and from the fig-
ure, we expect that this deviation will decrease for larger
size. For N = 5, the agreement is already perfect for the
larger sizes and for Ly = 3Lx. For Ly = Lx, there is still
a small deviation (of order 1/10 %) but again this devi-
ation decrease while increasing the size. The fact that
the agreement is better for N = 5 than for N = 4 is
not surprising since the Z(4) parafermionic field theory
has a c = 1 central charge. CFTs with such a central
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FIG. 2: df vs. Lmin for N = 4 and N = 5. The straight
lines correspond to the predictions of eq.(7).

charge are known to contain marginal operators which
may produce strong finite size effects.

Further tests can also be done like in [34, 36]. These
authors made additional checks like the test against
Schramm’s formula or the computations of κ from the
statistics of the Loewner driving function obtained by
“unfolding” the interfaces. Actually, for our purposes,
these measurements turn out to be not very practical
and precise due to the fluctuating boundary conditions
and the geometry that we employed. Indeed, concerning
Schramm’s formula, these boundary conditions explicitly
breaks the ZN symmetry and the left-right symmetry is
expected to be recovered only in the very large scale limit.
One observes then strong finite size corrections as already
observed by Gamsa and Cardy for the Q = 3 Potts model
with the same type of boundary conditions. Note that
in our case we have more states (4 or 5) and thus the
boundary conditions are even more asymmetrical. We
tested crossing probabilities against the Schramm’s for-
mula along the line indicated in Fig. 1. The best fit gives
a value of κ = 3.41(2) for Z(4) and κ = 3.42(2) for Z(5)
which is close to the expected results. The agreement in
both cases of the numerical data compared to Schramm’s
formula is of order 1% which is comparable to the result
in [34]. Concerning the direct extraction of κ the situa-
tion is even worse since the unfolding transformation is
singular. To bypass the problem, one should use a dif-
ferent geometry. For the Q = 3 Potts model, the disk

geometry on the triangular lattice was suitable and pro-
vided good results [34]. This configuration is not possible
in our case since the location of the critical point is not
known for the triangular lattice. In this respect we men-
tion that a method to find these critical points for Z(N)
spin models on different lattices has been proposed in
[32].

In this letter we obtained the first results on the geom-
etry on the interfaces which are expected to be described
by SLE in non minimal CFTs. We provide strong numer-
ical support to the validity of the exponent eq.(7) first
obtained in [19]. The agreement is excellent for both
cases that we considered with N = 4 and N = 5. We
believe that these results give support to the theoretical
approach proposed in [18, 19] to describe non minimal
CFTs by SLE with additional stochastic motion in the
internal degrees of freedom.
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