10 research outputs found

    Draft Genome Sequence of Cellulolytic and Xylanolytic Cellulomonas sp. Strain B6 Isolated from Subtropical Forest Soil

    Get PDF
    The genome information will be useful for studies of microbial enzymes for industrial application in lignocellulosic biomass utilization.Fil: Piccinni, Florencia Elizabeth. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Biotecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Murua, Yanina. Universidad Argentina de la Empresa. Facultad de Ingeniería y Ciencias, Exactas; ArgentinaFil: Talia, Paola Mónica. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Biotecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Ghio, Silvina. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Suelos; ArgentinaRivarola, Maximo Lisandro. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Biotecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Campos, Eleonora. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Biotecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Secretome profile of Cellulomonas sp. B6 growing on lignocellulosic substrates

    Get PDF
    Aims: Lignocellulosic biomass deconstruction is a bottleneck for obtaining biofuels and value-added products. Our main goal was to characterize the secretome of a novel isolate, Cellulomonas sp. B6, when grown on residual biomass for the formulation of cost-efficient enzymatic cocktails. Methods and Results: We identified 205 potential CAZymes in the genome of Cellulomonas sp. B6, 91 of which were glycoside hydrolases (GH). By secretome analysis of supernatants from cultures in either extruded wheat straw (EWS), grinded sugar cane straw (SCR) or carboxymethylcellulose (CMC), we identified which proteins played a role in lignocellulose deconstruction. Growth on CMC resulted in the secretion of two exoglucanases (GH6 and GH48) and two GH10 xylanases, while growth on SCR or EWS resulted in the identification of a diversity of CAZymes. From the 32 GHs predicted to be secreted, 22 were identified in supernatants from EWS and/or SCR cultures, including endo- and exoglucanases, xylanases, a xyloglucanase, an arabinofuranosidase/β-xylosidase, a β-glucosidase and an AA10. Surprisingly, among the xylanases, seven were GH10. Conclusions: Growth of Cellulomonas sp. B6 on lignocellulosic biomass induced the secretion of a diverse repertoire of CAZymes. Significance and Impact of the Study: Cellulomonas sp. B6 could serve as a source of lignocellulose-degrading enzymes applicable to bioprocessing and biotechnological industries.Fil: Piccinni, Florencia Elizabeth. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación En Ciencias Veterinarias y Agronómicas. Instituto de Agrobiotecnología y Biología Molecular. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Agrobiotecnología y Biología Molecular; ArgentinaFil: Ontañon, Ornella Mailén. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación En Ciencias Veterinarias y Agronómicas. Instituto de Agrobiotecnología y Biología Molecular. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Agrobiotecnología y Biología Molecular; ArgentinaFil: Ghio, Silvina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación En Ciencias Veterinarias y Agronómicas. Instituto de Agrobiotecnología y Biología Molecular. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Agrobiotecnología y Biología Molecular; ArgentinaFil: Sauka, Diego Herman. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación En Ciencias Veterinarias y Agronómicas. Instituto de Agrobiotecnología y Biología Molecular. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Agrobiotecnología y Biología Molecular; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Microbiología y Zoología Agrícola; ArgentinaFil: Talia, Paola Mónica. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación En Ciencias Veterinarias y Agronómicas. Instituto de Agrobiotecnología y Biología Molecular. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Agrobiotecnología y Biología Molecular; ArgentinaFil: Rivarola, Máximo Lisandro. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación En Ciencias Veterinarias y Agronómicas. Instituto de Agrobiotecnología y Biología Molecular. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Agrobiotecnología y Biología Molecular; ArgentinaFil: Valacco, María Pia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Campos, Eleonora. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación En Ciencias Veterinarias y Agronómicas. Instituto de Agrobiotecnología y Biología Molecular. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Agrobiotecnología y Biología Molecular; Argentin

    Synergic activity of Cel8Pa β-1,4 endoglucanase and Bg1Pa β-glucosidase from Paenibacillus xylanivorans A59 in beta-glucan conversion

    Get PDF
    In the efficient bioconversion of polysaccharides from lignocellulosic biomass, endoglucanases and β-glucosidases are key enzymes for the deconstruction of β-glucans. In this work, we focused on a GH8 endoglucanase (Cel8Pa) and a GH1 β-glucosidase (Bg1Pa) from Paenibacillus xylanivorans A59. Cel8Pa was active on a broad range of substrates, such as β-glucan from barley (24.5 IU/mg), lichenan (17.9 IU/mg), phosphoric acid swollen cellulose (PASC) (9.7 IU/mg), carboxi-methylcellulose (CMC) (7.3 IU/mg), chitosan (1.4 IU/mg) and xylan (0.4 IU/mg). Bg1Pa was active on cellobiose (C2) and cello-oligosaccharides up to C6, releasing glucose as the main product. When both enzymes were used jointly, there was a synergic effect in the conversion rate of polysaccharides to glucose. Cel8Pa and Bg1Pa presented important properties for simultaneous saccharification and fermentation (SSF) processes in second generation bioethanol production, such as tolerance to high concentration of glucose and ethanol.Fil: Ghio, Silvina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación En Ciencias Veterinarias y Agronómicas. Instituto de Agrobiotecnología y Biología Molecular. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Agrobiotecnología y Biología Molecular; ArgentinaFil: Bradanini, María B.. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación En Ciencias Veterinarias y Agronómicas. Instituto de Agrobiotecnología y Biología Molecular. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Agrobiotecnología y Biología Molecular; ArgentinaFil: Garrido, Mercedes María. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación En Ciencias Veterinarias y Agronómicas. Instituto de Agrobiotecnología y Biología Molecular. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Agrobiotecnología y Biología Molecular; ArgentinaFil: Ontañon, Ornella Mailén. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación En Ciencias Veterinarias y Agronómicas. Instituto de Agrobiotecnología y Biología Molecular. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Agrobiotecnología y Biología Molecular; ArgentinaFil: Piccinni, Florencia Elizabeth. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación En Ciencias Veterinarias y Agronómicas. Instituto de Agrobiotecnología y Biología Molecular. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Agrobiotecnología y Biología Molecular; ArgentinaFil: Marrero Diaz de Villegas, Rubén. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación En Ciencias Veterinarias y Agronómicas. Instituto de Agrobiotecnología y Biología Molecular. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Agrobiotecnología y Biología Molecular; ArgentinaFil: Talia, Paola Monica. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación En Ciencias Veterinarias y Agronómicas. Instituto de Agrobiotecnología y Biología Molecular. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Agrobiotecnología y Biología Molecular; ArgentinaFil: Campos, Eleonora. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación En Ciencias Veterinarias y Agronómicas. Instituto de Agrobiotecnología y Biología Molecular. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Agrobiotecnología y Biología Molecular; Argentin

    Characterization of carbohydrate active enzymes of Cellulomonas sp. B6 with application in deconstruction of lignocellulosic biomass

    Get PDF
    La lignocelulosa es el componente mayoritario de la biomasa vegetal. Está formada por celulosa embebida en una matriz de hemicelulosa y lignina. Los microorganismos celulolíticos aerobios secretan un conjunto de enzimas que les permiten degradar los polisacáridos estructurales (celulosa y hemicelulosas) para utilizarlos como fuente de carbono. Estas enzimas son ampliamente estudiadas y tienen gran importancia, particularmente por su potencial aplicación en el aprovechamiento de biomasa noalimenticia, como residuos agro-foresto industriales, principalmente para obtener biocombustibles o alimento animal. El aislamiento bacteriano Cellulomonas sp. B6, obtenido a partir de un consorcio celulolítico de suelo forestal, fue capaz de crecer en numerosos sustratos celulósicos, incluyendo biomasa. Los sobrenadantes de cultivo presentaron principalmente actividades endo y exoglucanasa y xilanasa y en los extractos intracelulares se detectaron actividades β-glucosidasa y β-xilosidasa. El crecimiento en biomasa lignocelulósica (residuo de cosecha de caña de azúcar, RAC) resultó en la mayor actividad enzimática en el sobrenadante (0,2 y 0,6 UI/ml para las actividades endoglucanasa y xilanasa, respectivamente). Estas actividades se mantuvieron en un rango de pH de 5 a 8 y de temperatura de 40 a 55°C, indicando la potencialidad del extracto para aplicaciones de degradación de biomasa en esas condiciones. Por zimografía, estas actividades se correlacionaron con proteínas presentes en el sobrenadante de cultivo. El genoma de Cellulomonas sp. B6 fue secuenciado por Illumina MiSeq y ensamblado en 279 contigs, resultando en una cobertura de 83X. El tamaño total del genoma se estimó en 4 Mb y el contenido de GC fue de 75,1%, similar a lo reportado para cepas de referencia del género. Por análisis filogénetico a partir de la secuencia de la subunidad 16S de ARN ribosomal, Cellulomonas sp. B6 se encuentra relacionado con las especies Cellulomonas flavigena y Cellulomonas persica, aunque presenta características genotípicas y metabólicas distintivas, lo que sugiere que podría tratarse de una nueva especie. Mediante anotación del genoma Cellulomonas sp. B6 por las plataformas NCBI y RAST, seguido de análisis por la plataforma dbCAN, se identificaron 3443 secuencias codificantes para proteínas, de las cuales 205 corresponden a enzimas activas sobre carbohidratos (CAZimas). De las CAZimas predichas, 91 son glicosil hidrolasas (GH), de las cuales 32 poseen secuencia codificante para péptido señal, lo que indica que podrían ser extra-celulares. Para identificar las proteínas responsables de la actividad enzimática previamente observada, se analizó por espectrometría de masas el secretoma completo (conjunto de proteínas extracelulares) en sobrenadantes de cultivo en celulosa (carboximetilcelulosa, CMC), residuo agrícola de caña de azúcar molido (RAC) o paja de trigo pretratada por extrusión (PTE), como únicas fuente de carbono. En el sobrenadante de cultivo en CMC se identificaron 2 exoglucanasas (GH6 and GH48) y tres xilanasas GH10, mientras que el crecimiento en biomasa (RAC o PTE) resultó en la identificación de 22 CAZimas, incluyendo endo- y exoglucanasas (2 GH6, 2 GH9 y 1 GH48), xilanasas (7 GH10 y 1 GH11), una xiloglucanasa (GH74), una arabinofuranosidasa/ β-xilosidasa (GH43), una β-glucosidasa (GH3) y una αglucuronidasa (GH62), entre otras. Adicionalmente, se identificó una oxígenasa lítica de polisacáridos (LPMO) AA10, potencialmente involucrada en la deconstrucción de celulosa cristalina por un mecanismo oxidativo. La diversidad de GH10 secretadas (todas las extracelulares codificadas en el genoma) remarca la importancia de estas enzimas en la deconstrucción de biomasa. Para comenzar a evaluar la contribución individual de las xilanasas de la familia GH10 a la actividad del extracto, una GH10 con un módulo de unión a sustrato CBM2, a la que denominamos GH10XynC, fue expresada de manera recombinante en Escherichia coli y purificada en forma soluble. La enzima recombinante presentó actividad endoxilanasa (EC 3.2.8.1) en el rango de 300 UI/mg, sobre xilano de abedul y sobre arabinoxilano. No presentó actividad sobre celulosa, confirmando que es una xilanasa libre de actividad celulolítica. Los productos de hidrólisis de xilano fueron xilobiosa (X2) y xilosa (X1) en menor proporción y la actividad fue óptima a 50ºC, en un rango de pH de 5 a 7,5. Ensayos de hidrólisis con GH10XynC de paja de cebada y de trigo y el marlo de maíz dulce (MMD) (pre-tratados por extrusión) resultaron en la conversión a xilooligosacáridos, X2 y X1, demostrando la habilidad de la enzima de actuar sobre el xilano contenido en la biomasa. En conjunto, estos resultados demuestran que Cellulomonas sp. B6 constituye una fuente de enzimas con potencial aplicación agro-industrial en el aprovechamiento de biomasa lignocelulósica. Es más, la enzima GH10XynC podría ser aplicada en la utilización de xilanos para las indutrias de biocombustibles, prebióticos y alimento animal.Lignocellulose is the major component of plant biomass. It consists of cellulose embedded in a matrix of hemicellulose and lignin. Aerobic cellulolytic microorganisms secrete a set of enzymes that allow them to degrade structural polysaccharides (cellulose and hemicelluloses) to use them as a carbon source. These enzymes are widely studied and have great importance, particularly for their potential application in the use of non-food biomass, such as agro-industrial waste, mainly to obtain biofuels or animal feed. The bacterial isolate Cellulomonas sp. B6 was obtained from a forest soil cellulolytic consortium. Cellulomonas sp. B6 was able to grow on numerous cellulosic substrates, including biomass. The culture supernatants showed mainly endo and exo-glucanase and xylanase activities and β-glucosidase and β-xylosidase activities were detected in the intracellular extracts. Growth in lignocellulosic biomass (sugar cane harvest residue, RAC) resulted in the highest enzymatic activity in the supernatant (0.2 and 0.6 IU/ml for the endoglucanase and xylanase activities, respectively). These activities were maintained in a pH range of 5 to 8 and a temperature of 40 to 55°C, indicating the potential of the extract for applications of biomass degradation under these conditions. By zymography, these activities correlated with proteins present in the culture supernatant. The genome of Cellulomonas sp. B6 was sequenced by Illumina MiSeq and assembled into 279 contigs, resulting in an 83X coverage. The total genome size was estimated at 4 Mb and the GC content was 75.1%, similar to that reported for reference strains of the genus. By phylogenetic analysis from the sequence of the 16S subunit of ribosomal RNA, it is related to Cellulomonas flavigena and Cellulomonas persica species, although Cellulomonas sp. B6 presents distinctive genotypic and metabolic characteristics, suggesting that it could be a new species. Annotation of the genome from Cellulomonas sp. B6 by the NCBI and RAST platforms, followed by analysis using the dbCAN platform, resulted in the identification of 3443 protein coding sequences, of which 205 corresponded to carbohydrates active enzymes (CAZymes). Of the predicted CAZymes, 91 were glycosyl hydrolases (GH), of which 32 possessed, signal peptide coding sequence, which indicated that they could be extracellular. To identify the proteins responsible for the enzymatic activity previously observed, the complete secretome (set of extracellular proteins) was analyzed by mass spectrometry in supernatants from cultures in cellulose (carboxymethylcellulose, CMC), in agricultural residue of ground sugar cane (RAC) or wheat straw pretreated by extrusion (PTE), as the sole carbon sources. In the CMC-culture supernatant, 2 exoglucanases (GH6 and GH48) and three GH10 xylanases were identified, whereas growth in biomass (RAC or PTE) resulted in the identification of 22 CAZymes, including endo- and exo-glucanases (2 GH6, 2 GH9 and 1 GH48), xylanases (7 GH10 and 1 GH11), a xyloglucanase (GH74), an arabinofuranosidase / β-xylosidase (GH43), a β-glucosidase (GH3) and an α-glucuronidase (GH62), among others. Additionally, a lytic polysaccharide monooxygenase (LPMO) AA10, potentially involved in cellulose deconstruction by an oxidative mechanism, was identified. The diversity of secreted GH10 (all of the extracellular ones encoded in the genome) highlights the importance of these enzymes in the deconstruction of biomass. To evaluate the individual contribution of the xylanases from the GH10 family to the activity of the extract, a GH10 xylanase with a CBM2substrate binding module, which we called GH10XynC, was expressed as recombinant in Escherichia coli and purified in soluble form. The recombinant enzyme showed endoxylanase activity (EC 3.2.8.1) in the range of 300 IU/mg, on birch xylan and on arabinoxylan. It did not present activity on cellulose, confirming that it is a xylanase free of cellulolytic activity. The hydrolysis products of xylan were xylobiose (X2) and xylose (X1) in lower proportion and the activity was optimal at 50°C, in a pH range of 5 to 7.5. Hydrolysis assays with GH10XynC of barley and wheat straw (BS, WS) and sweet corn cob (SCC) (pre-treated by extrusion) resulted in the conversion to xylooligosaccharides, X2 and X1, demonstrating the enzyme's ability to act on xylan content in biomass. Taken together, these results show that Cellulomonas sp. B6 is a source of enzymes with potential agro-industrial application in the use of lignocellulosic biomass. Moreover, GH10XynC could have applications in the bioconversion of xylans for biofuels, prebiotics and feed industries.Fil: Piccinni, Florencia Elizabeth. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; Argentin

    GH10 XynA is the main xylanase identified in the crude enzymaticextract of Paenibacillus sp. A59 when grown on xylan orlignocellulosic biomass

    No full text
    A novel bacterial isolate with polysaccharides degrading activity was identified as Paenibacillus sp., andnamed Paenibacillus sp. A59. Even though it is a strict mesophile, optimal xylanase activity of the crudeenzymatic extract was achieved between 50◦C and 70◦C and more than 60% of the activity was retainedafter incubation for 48 h at 50◦C, indicating thermotolerance of the enzymes involved. The extract wasalso active on pre-treated sugarcane residue (SCR) and wheat straw, releasing xylobiose and xylose asthe main products, therefore confirming its predominantly xylanolytic activity. By zymograms and massspectrometry of crude enzymatic extracts of xylan or SCR cultures, a 32 kDa GH10 beta- 1,4- endoxylanasewith xylanase and no CMCase activity was identified. We named this enzyme XynA and it was the onlyxylanase identified under both conditions assayed, suggesting that it is a good candidate for recombinantexpression and evaluation in hemicelluloses deconstruction applications. Also, a protein with two S-layerhomology domains (SLH) and a large uncharacterized C-terminal domain as well as an ABC substratebinding protein were identified in crude extracts of SCR cultures. We propose that Paenibacillus sp. A59uses a system similar to anaerobic and other Gram positive bacteria, with SLH-domain proteins anchoringpolysaccharide-degrading enzymes close to the membrane and the substrate binding protein assistingtranslocation of simple sugars to the cell interior.Fil: Ghio, Silvina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación de Recursos Naturales. Instituto de Suelos; ArgentinaFil: Insani, Ester Marina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Biotecnología; ArgentinaFil: Piccinni, Florencia Elizabeth. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Biotecnología; ArgentinaFil: Talia, Paola Monica. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Biotecnología; ArgentinaFil: Grasso, Daniel Horacio. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación de Recursos Naturales. Instituto de Suelos; ArgentinaFil: Campos, Eleonora. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Biotecnología; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Paenibacillus xylanivorans sp. nov., a xylan-degrading bacterium isolated from decaying forest soil

    No full text
    A xylanolytic bacterial strain, named A59T, was isolated from a forest soil consortium in southern Argentina. Strain A59T is a Gram-stain-positive, facultative anaerobic, endospore-forming and rod-shaped bacterium. Its optimal growth conditions are 30 °C (range, 28-37 °C), pH 7 (range, pH 5-10) and it tolerates up to 7 % of NaCl (range, 2-7 %). Chemotaxonomic analysis revealed that strain A59Tpossesses meso-diaminopimelic acid in the cell wall. It contains menaquinone MK-7 as the predominant isoprenoid quinone and the major fatty acid is anteiso-C15 : 0 (35.1 %), with a moderate amount of C16 : 0 (6.9 %). According to 16S RNA gene sequence analysis, the isolate is phylogenetically placed in the same cluster as Paenibacillus taichungensis BCRC 17757T (99.7 % nucleotide sequence identity) and Paenibacillus pabuli NBRC 13638T (99.1 %) and is closely related to Paenibacillus tundrae A10bT (98.8 %). However, phylogenetic studies based on the housekeeping gyrB gene placed A59T in a separate branch from all other related type strains. Furthermore, the results of whole genome average nucleotide identity analysis (gANI) with related type strains was lower than 91.10 % and the digital DNA-DNA hybridization value was lower than 44.30 %, which are below the threshold values for separating two species. The DNA G+C content was estimated as 46.09 mol%, based on genome sequencing. On the basis of these results, A59T represents a new species of the genus Paenibacillus, and we propose the name Paenibacillusxylanivorans sp. nov. The type strain is A59T (=DSM 107920T=NCIMB 15123T).Instituto de BiotecnologíaFil: Ghio, Silvina. Instituto Nacional de Tecnología Agropecuaria (INTA). UEDD IABIMO. Instituto de Agrobiotecnología y Biología Molecular. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Sauka, Diego Hernan. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Microbiología y Zoología Agrícola; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Ferrari, Alejandro E. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Bioquímica, Microbiología e Interacciones Biológicas en el Suelo; ArgentinaFil: Piccinni, Florencia Elizabeth. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Ontañon, Ornella Mailén. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Campos, Eleonora. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Paenibacillus sp. A59 GH10 and GH11 Extracellular Endoxylanases: Application in Biomass Bioconversion

    No full text
    The cost-efficient degradation of xylan to fermentable sugars is of particular interest in second generation bioethanol production, feed, food, and pulp and paper industries. Multiple potentially secreted enzymes involved in polysaccharide deconstruction are encoded in the genome of Paenibacillus sp. A59, a xylanolytic soil bacterium, such as three endoxylanases, seven GH43 β-xylosidases, and two GH30 glucuronoxylanases. In secretome analysis of xylan cultures, ten glycoside hydrolases were identified, including the three predicted endoxylanases, confirming their active role. The two uni-modular xylanases, a 32-KDa GH10 and a 20-KDa GH11, were recombinantly expressed and their activity on xylan was confirmed (106 and 85 IU/mg, respectively), with differences in their activity pattern. Both endoxylanases released mainly xylobiose (X2) and xylotriose (X3) from xylan and pre-treated biomasses (wheat straw, barley straw, and sweet corn cob), although only rGH10XynA released xylose (X1). rGH10XynA presented optimal conditions at pH 6, with thermal stability at 45?50 °C, while rGH11XynB showed activity in a wider range of pH, from 5 to 9, and was thermostable only at 45 °C. Moreover, GH11XynB presented sigmoidal kinetics on xylan, indicating possible cooperative binding, which was further supported by the structural model. This study provides a detailed analysis of the complete set of carbohydrate-active enzymes encoded in Paenibacillus sp. A59 genome and those effectively implicated in hemicellulose hydrolysis, contributing to understanding the mechanisms necessary for the bioconversion of this polysaccharide. Moreover, the two main free secreted xylanases, rGH10XynA and rGH11XynB, were fully characterized, supporting their potential application in industrial bioprocesses on lignocellulosic biomass.Fil: Ghio, Silvina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación de Recursos Naturales. Instituto de Suelos; ArgentinaFil: Ontañon, Ornella Mailén. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Biotecnología; ArgentinaFil: Piccinni, Florencia Elizabeth. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Biotecnología; ArgentinaFil: Marrero Díaz de Villegas, Rubén. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Biotecnología; ArgentinaFil: Talia, Paola Monica. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Biotecnología; ArgentinaFil: Grasso, Daniel Hector. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación de Recursos Naturales. Instituto de Suelos; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; ArgentinaFil: Campos, Eleonora. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Biotecnología; Argentin

    EcXyl43 β-xylosidase: molecular modeling, activity on natural and artificial substrates, and synergism with endoxylanases for lignocellulose deconstruction

    No full text
    Biomass hydrolysis constitutes a bottleneck for the biotransformation of lignocellulosic residues into bioethanol and high-value products. The efficient deconstruction of polysaccharides to fermentable sugars requires multiple enzymes acting concertedly. GH43 β-xylosidases are among the most interesting enzymes involved in hemicellulose deconstruction into xylose. In this work, the structural and functional properties of β-xylosidase EcXyl43 from Enterobacter sp. were thoroughly characterized. Molecular modeling suggested a 3D structure formed by a conserved N-terminal catalytic domain linked to an ancillary C-terminal domain. Both domains resulted essential for enzymatic activity, and the role of critical residues, from the catalytic and the ancillary modules, was confirmed by mutagenesis. EcXyl43 presented β-xylosidase activity towards natural and artificial substrates while arabinofuranosidase activity was only detected on nitrophenyl α-L-arabinofuranoside (pNPA). It hydrolyzed xylobiose and purified xylooligosaccharides (XOS), up to degree of polymerization 6, with higher activity towards longer XOS. Low levels of activity on commercial xylan were also observed, mainly on the soluble fraction. The addition of EcXyl43 to GH10 and GH11 endoxylanases increased the release of xylose from xylan and pre-treated wheat straw. Additionally, EcXyl43 exhibited high efficiency and thermal stability under its optimal conditions (40 °C, pH 6.5), with a half-life of 58 h. Therefore, this enzyme could be a suitable additive for hemicellulases in long-term hydrolysis reactions. Because of its moderate inhibition by monomeric sugars but its high inhibition by ethanol, EcXyl43 could be particularly more useful in separate hydrolysis and fermentation (SHF) than in simultaneous saccharification and co-fermentation (SSCF) or consolidated bioprocessing (CBP).Fil: Ontañon, Ornella Mailén. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Biotecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Ghio, Silvina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación de Recursos Naturales. Instituto de Suelos; ArgentinaFil: Marrero Díaz de Villegas, Rubén. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Biotecnología; ArgentinaFil: Piccinni, Florencia Elizabeth. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Biotecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Talia, Paola Monica. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Biotecnología; ArgentinaFil: Cerutti, Maria Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Campos, Eleonora. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Biotecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Enzymatic hydrolysis of barley straw for biofuel industry using a novel strain of Trametes villosa from Paranaense rainforest

    No full text
    Agricultural practices generate lignocellulosic waste that can be bioconverted by fungi to generate value-added products such as biofuels. In this context, fungal enzymes are presented as an alternative for their use in the hydrolysis of cellulose to sugars that can be fermented to ethanol. The aim of this work was to characterize LBM 033 strain and to analyze its efficiency in the hydrolysis of cellulosic substrates, including barley straw. LBM 033 strain was identified as Trametes villosa by molecular techniques, through the use of the ITS and rbp2 markers and the construction of phylogenetic trees. The cell-free supernatant of T. villosa LBM 033 showed high titers of hydrolytic enzymatic activities, necessary for the hydrolysis of the holocellulosic substrates, hydrolyzing pure cellulose to cellobiose and glucose and also degraded the polysaccharides contained in barley straw to short soluble oligosaccharides. These results indicate that macro fungi from tropical soil environments, such as T. villosa LBM 033 can be a valuable resource for in-house, cost effectiveproduction of enzymes that can be applied in the hydrolysis stage, which could reduce the total cost of bioethanol production.Fil: Coniglio, Romina Olga. Universidad Nacional de Misiones. Facultad de Ciencias Exactas Químicas y Naturales. Departamento de Bioquímica Clínica. Laboratorio de Biotecnología Molecular; ArgentinaFil: Díaz, Gabriela Verónica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste; Argentina. Universidad Nacional de Misiones. Facultad de Ciencias Exactas Químicas y Naturales. Departamento de Bioquímica Clínica. Laboratorio de Biotecnología Molecular; ArgentinaFil: Fonseca, Maria Isabel. Universidad Nacional de Misiones. Facultad de Ciencias Exactas Químicas y Naturales. Departamento de Bioquímica Clínica. Laboratorio de Biotecnología Molecular; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste; ArgentinaFil: Castrillo, María Lorena. Universidad Nacional de Misiones. Facultad de Ciencias Exactas Químicas y Naturales. Departamento de Bioquímica Clínica. Laboratorio de Biotecnología Molecular; ArgentinaFil: Piccinni, Florencia Elizabeth. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Agrobiotecnología y Biología Molecular. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Agrobiotecnología y Biología Molecular; ArgentinaFil: Villalba, Laura L.. Universidad Nacional de Misiones. Facultad de Ciencias Exactas Químicas y Naturales. Departamento de Bioquímica Clínica. Laboratorio de Biotecnología Molecular; ArgentinaFil: Campos, Eleonora. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Agrobiotecnología y Biología Molecular. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Agrobiotecnología y Biología Molecular; ArgentinaFil: Zapata, Pedro Dario. Universidad Nacional de Misiones. Facultad de Ciencias Exactas Químicas y Naturales. Departamento de Bioquímica Clínica. Laboratorio de Biotecnología Molecular; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste; Argentin

    Insights into the xylan degradation system of Cellulomonas sp. B6 : biochemical characterization of rCsXyn10A and rCsAbf62A

    No full text
    Valorization of the hemicellulose fraction of plant biomass is crucial for the sustainability of lignocellulosic biorefineries. The Cellulomonas genus comprises Gram-positive Actinobacteria that degrade cellulose and other polysaccharides by secreting a complex array of enzymes. In this work, we studied the specificity and synergy of two enzymes, CsXyn10A and CsAbf62A, which were identified as highly abundant in the extracellular proteome of Cellulomonas sp. B6 when grown on wheat bran. To explore their potential for bioprocessing, the recombinant enzymes were expressed and their activities were thoroughly characterized. rCsXyn10A is a GH10 endo-xylanase (EC 3.2.1.8), active across a broad pH range (5 to 9), at temperatures up to 55 °C. rCsAbf62A is an α-L-arabinofuranosidase (ABF) (EC 3.2.1.55) that specifically removes α-1,2 and α-1,3-L-arabinosyl substituents from arabino-xylo-oligosaccharides (AXOS), xylan, and arabinan backbones, but it cannot act on double-substituted residues. It also has activity on pNPA. No differences were observed regarding activity when CsAbf62A was expressed with its appended CBM13 module or only the catalytic domain. The amount of xylobiose released from either wheat arabinoxylan or arabino-xylo-oligosaccharides increased significantly when rCsXyn10A was supplemented with rCsAbf62A, indicating that the removal of arabinosyl residues by rCsAbf62A improved rCsXyn10A accessibility to β-1,4-xylose linkages, but no synergism was observed in the deconstruction of wheat bran. These results contribute to designing tailor-made, substrate-specific, enzymatic cocktails for xylan valorization.Instituto de BiotecnologíaFil: Garrido, Mercedes Maria. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular; ArgentinaFil: Garrido, Mercedes Maria. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Garrido, Mercedes Maria. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Piccinni, Florencia Elizabeth. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular; ArgentinaFil: Piccinni, Florencia Elizabeth. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Piccinni, Florencia Elizabeth. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Landoni, Malena. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigación en Hidratos de Carbono; ArgentinaFil: Landoni, Malena. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Peña, María Jesús. University of Georgia. Complex Carbohydrate Research Center; Estados UnidosFil: Topalian, Juliana. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular; ArgentinaFil: Topalian, Juliana. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Couto, Alicia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigación en Hidratos de Carbono; ArgentinaFil: Wirth, Sonia Alejandra. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Wirth, Sonia Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Urbanowicz, Breeanna Rae. University of Georgia. Department of Biochemistry and Molecular Biology; Estados UnidosFil: Campos, Eleonora. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular; ArgentinaFil: Campos, Eleonora. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin
    corecore