65 research outputs found

    Cascading reaction of arginase and urease on a graphene-based FET for ultrasensitive, real-time detection of arginine

    Get PDF
    Herein, a biosensor based on a reduced graphene oxide field effect transistor (rGO-FET) functionalized with the cascading enzymes arginase and urease was developed for the detection of L-arginine. Arginase and urease were immobilized on the rGO-FET sensing surface via electrostatic layer-by-layer assembly using polyethylenimine (PEI) as cationic building block. The signal transduction mechanism is based on the ability of the cascading enzymes to selectively perform chemical transformations and prompt local pH changes, that are sensitively detected by the rGO-FET. In the presence of L-arginine, the transistors modified with (PEI/urease(arginase)) multilayers showed a shift in the Dirac point due to the change in the local pH close to the graphene surface, produced by the catalyzed urea hydrolysis. The transistors were able to monitor L-arginine in the 10–1000 μM linear range with a LOD of 10 μM, displaying a fast response and a good long-term stability. The sensor showed stereospecificity and high selectivity in the presence of non-target amino acids. Taking into account the label-free, real-time measurement capabilities and the easily quantifiable, electronic output signal, this biosensor offers advantages over state-of-the-art L-arginine detection methods.Fil: Berninger, Teresa. Austrian Institute Of Technology; AustriaFil: Bliem, Christina. Austrian Institute Of Technology; AustriaFil: Piccinini, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Azzaroni, Omar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Knoll, Wolfgang. Austrian Institute Of Technology; Austri

    Mass and charge transport in highly mesostructured polyelectrolyte/electroactive-surfactant multilayer films

    Get PDF
    Hypothesis: Dimensionally stable electroactive films displaying spatially addressed redox sites is still a challenging goal due to gel-like structure. Polyelectrolyte and surfactants can yield highly mesostructured films using simple buildup strategies as layer-by-layer. The use of redox modified surfactants is expected to introduce order and an electroactive response in thin films. Experiments: The assembly of polyacrylic acid and different combinations of redox-modified and unmodified hexadecyltrimethylammonium bromide yields highly structured and electroactive thin films. The growth, viscoelastic properties, mass, and electron transport of these films were studied by combining electrochemical and quartz crystal balance with dissipation experiments. Findings: Our results show that the films are highly rigid and poorly hydrated. The mass and charge transport reveal that the ingress (egress) of the counter ions during the electrochemical oxidation (reduction) is accompanied with a small amount of water, which is close to their hydration sphere. Thus, the generated mesostructured films present an efficient charge transport with negligible changes in their structures during the electron transfer process. The control over the meso-organization and its stability represents a promising tool in the construction of devices where the vectorial transfer of electrons, or ions, is required.Fil: Piccinini, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: González, Graciela Alicia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaFil: Azzaroni, Omar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Battaglini, Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentin

    Mesostructured electroactive thin films through layer-by-layer assembly of redox surfactants and polyelectrolytes

    Get PDF
    Electroactive thin films are an important element in the devices devoted to energy conversion, actuators, and molecular electronics, among others. Their build-up by the layer-by-layer technique is an attractive choice since a fine control over the thickness and composition can be achieved. However, most of the assemblies described in the literature show a lack of internal order, and their thicknesses change upon oxidation-state alterations. In this work, we describe the formation of layer-by-layer assemblies of redox surfactants and polyelectrolytes that leads to the construction of mesoscale organized electroactive films. In contrast to thin films prepared with traditional redox polymers, here, the redox surfactant does not only allow the control of the film meso-organization (from 2D hexagonal to circular hexagonal phases) but it also allows the control of the number and position of the redox centers. Finally, these films show high stability and a negligible structural deformation under redox-state changes.Fil: Piccinini, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Ceolin, Marcelo Raul. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Battaglini, Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaFil: Azzaroni, Omar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentin

    Reversible Switching of the Dirac Point in Graphene Field-Effect Transistors Functionalized with Responsive Polymer Brushes

    Get PDF
    The reversible control of the graphene Dirac point using external chemical stimuli is of major interest in the development of advanced electronic devices such as sensors and smart logic gates. Here, we report the coupling of chemoresponsive polymer brushes to reduced graphene oxide (rGO)-based field-effect transistors to modulate the graphene Dirac point in the presence of specific divalent cations. Poly[2-(methacryloyloxy)ethyl] phosphate (PMEP) brushes were grown on the transistor channel by atom transfer radical polymerization initiated from amine-pyrene linkers noncovalently attached to rGO surfaces. Our results show an increase in the Dirac point voltage due to electrostatic gating effects upon the specific binding of Ca2+ and Mg2+ to the PMEP brushes. We demonstrate that the electrostatic gating is reversibly controlled by the charge density of the polymer brushes, which depends on the divalent cation concentration. Moreover, a theoretical formalism based on the Grahame equation and a Langmuir-type binding isotherm is presented to obtain the PMEP–cation association constant from the experimental data.Fil: Piccinini, Esteban. Facultad de Ciencias Exactas, Universidad Nacional de la Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Bliem, Christina. Austrian Institute of Technology; AustriaFil: Giussi, Juan Martín. Facultad de Ciencias Exactas, Universidad Nacional de la Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Knoll, Wolfgang. Austrian Institute of Technology; AustriaFil: Azzaroni, Omar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentin

    Enzyme-polyelectrolyte multilayer assemblies on reduced graphene oxide field-effect transistors for biosensing applications

    Get PDF
    We present the construction of layer-by-layer (LbL) assemblies of polyethylenimine and urease onto reduced-graphene-oxide based field-effect transistors (rGO FETs) for the detection of urea. This versatile biosensor platform simultaneously exploits the pH dependency of liquid-gated graphene-based transistors and the change in the local pH produced by the catalyzed hydrolysis of urea. The use of an interdigitated microchannel resulted in transistors displaying low noise, high pH sensitivity (20.3 µA/pH) and transconductance values up to 800 µS. The modification of rGO FETs with a weak polyelectrolyte improved the pH response because of its transducing properties by electrostatic gating effects. In the presence of urea, the urease-modified rGO FETs showed a shift in the Dirac point due to the change in the local pH close to the graphene surface. Markedly, these devices operated at very low voltages (less than 500 mV) and were able to monitor urea in the range of 1–1000 µm, with a limit of detection (LOD) down to 1 µm, fast response and good long-term stability. The urea-response of the transistors was enhanced by increasing the number of bilayers due to the increment of the enzyme surface coverage onto the channel. Moreover, quantification of the heavy metal Cu2+(with a LOD down to 10 nM) was performed in aqueous solution by taking advantage of the urease specific inhibition.Instituto de Investigaciones Fisicoquímicas Teóricas y AplicadasFacultad de Ciencias Exacta

    Flexible conducting platforms based on PEDOT and graphite nanosheets for electrochemical biosensing applications

    Get PDF
    Carbon nanomaterials are usually employed for improving the electrical and electrochemical properties of conducting polymer electrodes. However, low-cost of production, scalable simple procedures and adequate integration of the components at the molecular level within the composites become a challenge when dealing with real life applications. In this work, we present a novel strategy for producing graphite nanosheets (GNS) dispersed in the solvent employed then for the chemical synthesis of PEDOT, which allows producing composite nanofilms on plastic substrates for the construction of transparent and flexible all-polymer electrodes. By an optimized experimental procedure, we achieved a proper integration of PEDOT and GNS within ultrathin (<100 nm) composite films and good enough conductivity to ensure adequate electrochemical response without the requirement of conducting base electrodes. We tested the performance of these platforms for real applications by developing glucose biosensors by molecular integration of supramolecular assembly of glucose oxidase and an electroactive polyelectrolyte on top of the PEDOT-GNS coatings. The incorporation of GNS does not only improve the voltammetric response of the resulting all-polymer electrodes but also produces a better integration of the electrochemically active assembly.Fil: Scotto, Juliana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Química; Argentina. Universidad Nacional Arturo Jauretche; ArgentinaFil: Piccinini, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Química; ArgentinaFil: Von Bilderling, Catalina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Química; ArgentinaFil: Coria Oriundo, Lucy Linders. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; ArgentinaFil: Battaglini, Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; ArgentinaFil: Knoll, Wolfgang. Austrian Institute of Technology; Austria. Competence Center for Electrochemical Surface Technologies; AustriaFil: Marmisollé, Waldemar Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; ArgentinaFil: Azzaroni, Omar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; Argentin

    Reversible Switching of the Dirac Point in Graphene Field-Effect Transistors Functionalized with Responsive Polymer Brushes

    Get PDF
    The reversible control of the graphene Dirac point using external chemical stimuli is of major interest in the development of advanced electronic devices such as sensors and smart logic gates. Here, we report the coupling of chemoresponsive polymer brushes to reduced graphene oxide (rGO)-based field-effect transistors to modulate the graphene Dirac point in the presence of specific divalent cations. Poly[2-(methacryloyloxy)ethyl] phosphate (PMEP) brushes were grown on the transistor channel by atom transfer radical polymerization initiated from amine-pyrene linkers noncovalently attached to rGO surfaces. Our results show an increase in the Dirac point voltage due to electrostatic gating effects upon the specific binding of Ca2+ and Mg2+ to the PMEP brushes. We demonstrate that the electrostatic gating is reversibly controlled by the charge density of the polymer brushes, which depends on the divalent cation concentration. Moreover, a theoretical formalism based on the Grahame equation and a Langmuir-type binding isotherm is presented to obtain the PMEP-cation association constant from the experimental data.Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicada

    Enzyme-polyelectrolyte multilayer assemblies on reduced graphene oxide field-effect transistors for biosensing applications

    Get PDF
    We present the construction of layer-by-layer (LbL) assemblies of polyethylenimine and urease onto reduced-graphene-oxide based field-effect transistors (rGO FETs) for the detection of urea. This versatile biosensor platform simultaneously exploits the pH dependency of liquid-gated graphene-based transistors and the change in the local pH produced by the catalyzed hydrolysis of urea. The use of an interdigitated microchannel resulted in transistors displaying low noise, high pH sensitivity (20.3 µA/pH) and transconductance values up to 800 µS. The modification of rGO FETs with a weak polyelectrolyte improved the pH response because of its transducing properties by electrostatic gating effects. In the presence of urea, the urease-modified rGO FETs showed a shift in the Dirac point due to the change in the local pH close to the graphene surface. Markedly, these devices operated at very low voltages (less than 500 mV) and were able to monitor urea in the range of 1–1000 µm, with a limit of detection (LOD) down to 1 µm, fast response and good long-term stability. The urea-response of the transistors was enhanced by increasing the number of bilayers due to the increment of the enzyme surface coverage onto the channel. Moreover, quantification of the heavy metal Cu2+(with a LOD down to 10 nM) was performed in aqueous solution by taking advantage of the urease specific inhibition.Instituto de Investigaciones Fisicoquímicas Teóricas y AplicadasFacultad de Ciencias Exacta

    Towards a muon collider

    Get PDF
    A muon collider would enable the big jump ahead in energy reach that is needed for a fruitful exploration of fundamental interactions. The challenges of producing muon collisions at high luminosity and 10 TeV centre of mass energy are being investigated by the recently-formed International Muon Collider Collaboration. This Review summarises the status and the recent advances on muon colliders design, physics and detector studies. The aim is to provide a global perspective of the field and to outline directions for future work

    Towards a Muon Collider

    Full text link
    A muon collider would enable the big jump ahead in energy reach that is needed for a fruitful exploration of fundamental interactions. The challenges of producing muon collisions at high luminosity and 10 TeV centre of mass energy are being investigated by the recently-formed International Muon Collider Collaboration. This Review summarises the status and the recent advances on muon colliders design, physics and detector studies. The aim is to provide a global perspective of the field and to outline directions for future work.Comment: 118 pages, 103 figure
    corecore