45 research outputs found

    Deactivation of endothelium and reduction in angiogenesis in psoriatic skin and synovium by low dose infliximab therapy in combination with stable methotrexate therapy: a prospective single-centre study

    Get PDF
    Psoriasis and psoriatic arthritis are inflammatory diseases that respond well to anti-tumour necrosis factor-α therapy. To evaluate the effects of anti-tumour necrosis factor-α treatment on expression of adhesion molecules and angiogenesis in psoriatic lesional skin and synovial tissue, we performed a prospective single-centre study with infliximab therapy combined with stable methotrexate therapy. Eleven patients with both active psoriasis and psoriatic arthritis received infusions of infliximab (3 mg/kg) at baseline, and at weeks 2, 6, 14 and 22 in an open-label study. In addition, patients continued to receive stable methotrexate therapy in dosages ranging from 5 to 20 mg/week. Clinical assessments, including Psoriasis Area and Severity Index (PASI) and Disease Activity Score (DAS), were performed at baseline and every 2 weeks afterward. In addition, skin biopsies from a target psoriatic plaque and synovial tissue biopsies from a target joint were taken before treatment and at week 4. Immunohistochemical analysis was performed to detect the number of blood vessels, the expression of adhesion molecules and the presence of vascular growth factors. Stained sections were evaluated by digital image analysis. At week 16, the mean PASI was reduced from 12.3 ± 2.4 at baseline to 1.8 ± 0.4 (P ≤ 0.02). The mean DAS was reduced from 6.0 ± 0.5 to 3.6 ± 0.6 (P ≤ 0.02). We found some fluctuations in DAS response as compared with the change in PASI, with the latter exhibiting a steady decrease over time. After 4 weeks the cell infiltrate was reduced in both skin and synovium. There was a significant reduction in the number of blood vessels in dermis and synovium at week 4. A significant reduction in the expression of α(v)β(3 )integrin, a marker of neovascularization, was also found in both skin and synovium at week 4. In addition, a significant reduction in the expression of adhesion molecules was observed in both skin and synovium at week 4. We also observed a trend toward reduced expression of vascular endothelial growth factor in both skin and synovium. In conclusion, low-dose infliximab treatment leads to decreased neoangiogenesis and deactivation of the endothelium, resulting in decreased cell infiltration and clinical improvement in psoriasis and psoriatic arthritis

    The MEF2 transcriptional target DMPK induces loss of sarcomere structure and cardiomyopathy

    Get PDF
    Aims The pathology of heart failure is characterized by poorly contracting and dilated ventricles. At the cellular level, this is associated with lengthening of individual cardiomyocytes and loss of sarcomeres. While it is known that the transcription factor myocyte enhancer factor-2 (MEF2) is involved in this cardiomyocyte remodelling, the underlying mechanism remains to be elucidated. Here, we aim to mechanistically link MEF2 target genes with loss of sarcomeres during cardiomyocyte remodelling. Methods Neonatal rat cardiomyocytes overexpressing MEF2 elongated and lost their sarcomeric structure. We identified and results myotonic dystrophy protein kinase (DMPK) as direct MEF2 target gene involved in this process. Adenoviral overexpression of DMPK E, the isoform upregulated in heart failure, resulted in severe loss of sarcomeres in vitro, and transgenic mice overexpressing DMPK E displayed disruption of sarcomere structure and cardiomyopathy in vivo. Moreover, we found a decreased expression of sarcomeric genes following DMPK E gain-of-function. These genes are targets of the transcription factor serum response factor (SRF) and we found that DMPK E acts as inhibitor of SRF transcriptional activity. Conclusion Our data indicate that MEF2-induced loss of sarcomeres is mediated by DMPK via a decrease in sarcomeric gene expression by interfering with SRF transcriptional activity. Together, these results demonstrate an unexpected role for DMPK as a direct mediator of adverse cardiomyocyte remodelling and heart failure

    Expression of the chemokine receptor CCR5 in psoriasis and results of a randomized placebo controlled trial with a CCR5 inhibitor

    Get PDF
    Several reports have indicated that the chemokine receptor CCR5 and its ligands, especially CCL5 (formerly known as RANTES), may play a role in the pathogenesis of psoriasis. The purpose of this investigation was to examine the expression of CCR5 and its ligands in chronic plaque psoriasis and to evaluate the clinical and immunohistochemical effect of a CCR5 receptor inhibitor. Immunohistochemical analysis showed low but significant increased total numbers of CCR5 positive cells in epidermis and dermis of lesional skin in comparison to non-lesional skin. However, relative expression of CCR5 proportional to the cells observed revealed that the difference between lesional and non-lesional skin was only statistically significant in the epidermis for CD3 positive cells and in the dermis for CD68 positive cells. Quantification of mRNA by reverse transcriptase-polymerase chain reaction only showed an increased expression of CCL5 (RANTES) in lesional skin. A randomized placebo-controlled clinical trial in 32 psoriasis patients revealed no significant clinical effect and no changes at the immunohistochemical level comparing patients treated with placebo or a CCR5 inhibitor SCH351125. We conclude that although CCR5 expression is increased in psoriatic lesions, this receptor does not play a crucial role in the pathogenesis of psoriasis

    Effective Melanoma Immunotherapy in Mice by the Skin-Depigmenting Agent Monobenzone and the Adjuvants Imiquimod and CpG

    Get PDF
    Background: Presently melanoma still lacks adequate treatment options for metastatic disease. While melanoma is exceptionally challenging to standard regimens, it is suited for treatment with immunotherapy based on its immunogenicity. Since treatment-related skin depigmentation is considered a favourable prognostic sign during melanoma intervention, we here aimed at the reverse approach of directly inducing vitiligo as a shortcut to effective anti-melanoma immunity. Methodology and Principal Findings: We developed an effective and simple to use form of immunotherapy by combining the topical skin-bleaching agent monobenzone with immune-stimulatory imiquimod cream and cytosine-guanine oligodeoxynucleotides (CpG) injections (MIC therapy). This powerful new approach promptly induced a melanoma antigen-specific immune response, which abolished subcutaneous B16. F10 melanoma growth in up to 85% of C57BL/6 mice. Importantly, this regimen induced over 100 days of tumor-free survival in up to 60% of the mice, and forcefully suppressed tumor growth upon re-challenge either 65- or 165 days after MIC treatment cessation. Conclusions: MIC therapy is effective in eradicating melanoma, by vigilantly incorporating NK-, B-and T cells in its therapeutic effect. Based on these results, the MIC regimen presents a high-yield, low-cost and simple therapy, readily applicable in the clini

    The foreign body giant cell cannot resorb bone, but dissolves hydroxyapatite like osteoclasts

    No full text
    Foreign body multinucleated giant cells (FBGCs) and osteoclasts share several characteristics, like a common myeloid precursor cell, multinuclearity, expression of tartrate-resistant acid phosphatase (TRAcP) and dendritic cell-specific transmembrane protein (DCSTAMP). However, there is an important difference: osteoclasts form and reside in the vicinity of bone, while FBGCs form only under pathological conditions or at the surface of foreign materials, like medical implants. Despite similarities, an important distinction between these cell types is that osteoclasts can resorb bone, but it is unknown whether FBGCs are capable of such an activity. To investigate this, we differentiated FBGCs and osteoclasts in vitro from their common CD14+ monocyte precursor cells, using different sets of cytokines. Both cell types were cultured on bovine bone slices and analyzed for typical osteoclast features, such as bone resorption, presence of actin rings, formation of a ruffled border, and characteristic gene expression over time. Additionally, both cell types were cultured on a biomimetic hydroxyapatite coating to discriminate between bone resorption and mineral dissolution independent of organic matrix proteolysis. Both cell types differentiated into multinucleated cells on bone, but FBGCs were larger and had a higher number of nuclei compared to osteoclasts. FBGCs were not able to resorb bone, yet they were able to dissolve the mineral fraction of bone at the surface. Remarkably, FBGCs also expressed actin rings, podosome belts and sealing zones-cytoskeletal organization that is considered to be osteoclast- specific. However, they did not form a ruffled border. At the gene expression level, FBGCs and osteoclasts expressed similar levels of mRNAs that are associated with the dissolution of mineral (e.g., anion exchange protein 2 (AE2), carbonic anhydrase 2 (CAII), chloride channel 7 (CIC7), and vacuolar-type H+-ATPase (v-ATPase)), in contrast the matrix degrading enzyme cathepsin K, which was hardly expressed by FBGCs. Functionally, the latter cells were able to dissolve a biomimetic hydroxyapatite coating in vitro, which was blocked by inhibiting v-ATPase enzyme activity. These results show that FBGCs have the capacity to dissolve the mineral phase of bone, similar to osteoclasts. However, they are not able to digest the matrix fraction of bone, likely due to the lack of a ruffled border and cathepsin K

    Ultrastructural aspects of foreign body giant cells generated on different substrates

    No full text
    Implantation of biomaterials into the body, e.g. for tissue engineering purposes, induces a material dependent inflammatory response called the foreign body reaction (FBR). A hallmark feature of this response is the formation of large multinucleated cells: foreign body giant cells (FBGCs). Biomaterials like cross-linked and non-cross-linked collagen often induce the formation of FBGCs. It is unknown whether different biomaterials result in the formation of different FBGCs. To investigate this, we implanted cross linked and non-cross-linked dermal sheep collagen subcutaneously in mice. After 21 days the implanted material was collected and prepared for ultrastructural analysis. More FBGCs formed on and between implants of cross-linked collagen compared to non-cross-linked material. The ultrastructural aspects of the FBGCs present on the two types of implants proved to be similar. On both materials, they formed long slender protrusions on the basolateral membrane, they were very rich in mitochondria, contained numerous nuclei, and showed signs of the presence of a clear zone facing the implanted material. Similar clear zones, that resemble osteoclastic features, were also seen in FBGCs generated in vitro on bone slices, but these cells did not form a ruffled border. However, similarities in ultrastructure such as the occurrence of slender protrusions and high mitochondrion content were also found in the FBGCs generated in vitro. These data indicate that FBGCs formed on different substrates share many morphological characteristics. The formation of long finger-like protrusions seemed typical for the FBGCs, in vivo as well as in vitro, however the function of these structures needs further analysis. (C) 2016 Elsevier Inc. All rights reserved

    Osteoclasts and FBGCs cultured on biomimetic hydroxyapatite coatings.

    No full text
    <p>After 25 days of culture, cells were stained for TRAcP activity and nuclei (DAPI). Multinucleated, TRAcP positive osteoclasts (<b>a</b>; black arrow) and FBGCs (<b>b</b>; black arrow) dissolved the coating (coating; red asterisk, plastic; black aterisk). Macrophages were also able to dissolve small parts of the coating (<b>c</b>; black arrow, <b>e</b>). Control wells, incubated without cells, showed no signs of apatite coating dissolution (<b>d</b>). Quantitatively, osteoclasts dissolved more of the coating than the FBGCs (<b>e</b>). Percent dissolution of the hydroxyapatite coating plots represent the mean ± S.D. per 0.32 cm<sup>2</sup> coating surface. Scale bar = 100 μm. *p<0.05, **p<0.01.</p

    TRAcP activity of osteoclasts, FBGCs, and macrophages cultured on bone.

    No full text
    <p>Human CD14<sup>+</sup> monocytes were cultured on bone slices for 25 days with M-CSF and RANK-L (osteoclasts); M-CSF, IL-4, and IL-13 (FBGCs); M-CSF (macrophages) and without cytokines (control). Osteoclasts were TRAcP-positive (<b>a</b>; black arrow) and most contained < 10 nuclei (<b>e</b>). FBGCs were larger with > 10 nuclei (<b>f</b>), and stained less intensely for TRAcP (<b>b</b>; black arrow). Macrophages were generally mononuclear and stained weakly for TRAcP (<b>c, g</b>), similar as CD14<sup>+</sup> cells that were cultured without cytokines (<b>d, h</b>). Bar plots represent the mean ± S.D. of multinucleated cells (MNCs) per 0.25 cm<sup>2</sup> bone surface, from 5 independent donors. Scale bar = 100 μm. Red asterisk = bone. *p<0.05, **p<0.01.</p
    corecore