51 research outputs found

    Highest states in light-cone AdS5×S5AdS_5\times S^5 superstring

    Get PDF
    We study the highest states in the compact rank-1 sectors of the AdS5 X S5 superstring in the framework of the recently proposed light cone Bethe Ansatz equations. In the su(1|1) sector we present strong coupling expansions in the two limits L,lambda -> OO (expanding in power of lambda^{-1/4} with fixed large L) and lambda, L -> OO (expanding in power of 1/L with fixed large lambda) where lambda is the 't Hooft coupling and L is the number of Bethe momenta. The two limits do not commute apart from the leading term which reproduces the result obtained with the Arutyunov-Frolov-Staudacher phase in the lambda, L -> OO limit. In the su(2) sector we perform the strong coupling expansions in the L->OO limit up to O(lambda^{-1/4}), and our result is in agreement with previuos String Bethe Ansatz analysis.Comment: 33 pages, 3 eps figure

    Oxygen contribution to phenolic evolution during aging of red wines

    Get PDF
    Abstract Red wine aging is essentially an oxidative process mainly regulated by wine phenolic composition and storage conditions. Wines contain hydroquinones such as catechol derivatives that undergo redox reactions, reducing oxygen to hydrogen peroxide. These reaction are catalized by metals. Iron(II) species present react with hydrogen peroxide to form hydroxyl radicals in the Fenton reaction. These radicals can then react with alcohols to form aldehydes. Because ethanol is the predominant alcohol present in wine, acetaldehyde is the major product of this reaction. Acetaldehyde and other oxidation by-products activate a great series of reactions changing wine quality. Generally, a slow oxygenation improves quality of red wines, while an excessive oxidation causes a dramatic quality loss. Red wine phenolics, by trigging and driving oxidative reactions, strongly affect the outcome of wine oxidation and the acetaldehyde production. Although numerous studies deal on wine oxidation the role of initial wine phenolic composition on the outcome of oxidation is still not known. Apart polyphenols (e.g. anthocyanins, proanthocyanidins and pH,) also exogenous factors such as sulfur dioxide, hydrolysable tannins and glutathione worth investigation for the important implication for red wine quality and longevity. In this PhD thesis four studies were made to contribute to deep knowledge on wine oxidation chemistry. The first study provides clear evidence for a connection between anthocyanin/tannin ratio of red wine and the effect of oxygenation. Contact between wine and oxygen influences wine quality and the results obtained in this study highlight that, when dealing with wine rich in anthocyanins, the lower the anthocyanin/tannin ratio, the higher the positive effect of oxidation. Different anthocyanin tannin ratios during an oxidative process affects the copigmentation reaction causing a shift towards higher intensities (hyperchromic effect). In particular, the increase in polymeric pigments resistant to SO2 discoloration during oxidation is enhanced lowering the anthocyanin/tannin ratio. Tannin compounds have a similar behavior with oxidation: the three wines showed a decrease in VRF (monomers dimers and trimers) and an increase in BSA reactive tannins indicating a possible increase of the degree of polymerization. The higher the quantity of tannins added in wines, the lower the acetaldehyde produced by Fenton reaction. This is the first time that a strong link between the formation of acetaldehyde and the anthocyanins/tannins ratio in red wine has been observed. Further studies are still required to advance knowledge in the use of different tannins to improve wine characteristics during practices such as micro and nano-oxygenation. Starting from results obtained in the first study, a successive experiment was carried out aimed to evaluate the effect of the addition of grape tannins and hydrolysable tannins (gallic and ellagic tannins) of wood origin. All enological tannins preparations used increased the level polymeric pigments in wine at the end of the treatment. Among them, ellagitannins increased drastically the production of polymeric pigments already during the first phases of oxidative stress improving the stability of the color of the wine and causing a shift towards higher intensities (hyperchromic effect). During first phases of oxidation tannins reactive towards BSA increase for all wines, suggesting that during oxidation the high reactive tannins are involved in numerous condensation reactions. Acetaldehyde was quickly produced by Fenton reaction and, interestingly, all exogenous tannins determine a greater production of this highly reactive compound. For all wines analyzed a dramatic consumption of acetaldehyde was observed. These results confirm the key role of acetaldehyde in wine oxidation as trigger compound for reactions of stabilization of colour and condensation of tannins. In a third experiment the protective effect of sulfur dioxide and glutathione GSH on malvidin 3-monoglucoside degradation was evaluated. The use of GSH alone determined an increase in the degradation of malvidin 3-monoglucoside regardless of pH in model solution and in real wine. Results obtained in this study showed that the possibility to use GSH to prevent anthocyanins oxidation is not linked to its capability to quench hydrogen peroxide but only, in the first steps of oxidation, to act on quinones chemistry and limit the reduction of oxygen to hydrogen peroxide. When in wine is present hydrogen peroxide GSH is not able to scavenge it and contrast Fenton reaction nor alone and not in combination with SO2 at concentration usually proposed during winemaking. Taking into account these results and a recent study showing no protective activity of GSH to prevent white wines oxidation after one year of aging in bottles (Panero, et al., 2015), the use of this tripeptide as an alternative to SO2 has to be revised and the chemistry of action of this compounds in wine conditions better understood. The last experiment was performed applying a controlled nano-oxygenation to three monovarietal wines Aglianico (AGL), Casavecchia (CAS) and Pallagrello (PALL) very rich in tannins. In this work a general trend for polyphenols evolution during aging has been observed and it resulted into the loss of native anthocyanins, the formation of small and large polymeric pigments and the decrease in reactivity of tannins towards salivary proteins. The oxygen transmission rate (OTR) of closures can influence this trend but in different entity for the three wines considered. AGL wines resulted more affected by oxygen uptake than PALL and CAS ones. Because AGL wines showed lower SO2 protection and total phenolic content, these results underline that with low phenolic content a wine is more susceptible to oxidation and needs a special care on oxygen management. Wines differed for total anthocyanins content more than for total tannins content and AGL showed a anthocyanin/tannin ratio almost 3 times higher than CAS and PALL. This consideration and results obtained after 15 months of bottle aging suggest that the ratio between these two classes of compounds may have an important part on wine evolution. Further study can help to elucidate the role played by each phenolic class during NOx. The effect of OTR on sensory profiles of wines was more relevant than on polyphenols because for all wines, the closure with the highest oxygen ingress determined a higher intensity of red fruit notes. For CAS and PALL an antagonist effect between fruity notes and reduction ones was also observed and OTR of closure strongly affect this balance shifting wines towards reduction off-odours, especially with the lowest oxygen ingress. These data indicate that the selection of a closure that allows only specified amounts of oxygen into the wine over time is a useful tool to improve red wine quality taking into account its expected lifetime in bottle. All these results highlights the importance of anthocyanin/tannin ratio and of phenolic composition for the oxygen tolerance of a wine. Further studies should be aimed to find the relationship between the phenolic compounds variations, the acetaldehyde production and the formation of odorous volatiles compounds linked to oxidative spoilage of wine. With all these information a method to evaluate wine oxygen tolerance and to better manage wine shelf-life could be pointed out. During wine production and aging, the evaluation of acetaldehyde as well as the analysis and the use of SO2 resulted really critical and should be routinely monitored. GSH is instead not good to prevent Fenton reaction but only to its nucleophilic reaction with quinones. At this regard, the application of MOx in the post-fermentatives phase should be performed with low levels of SO2. Only when the desired stabilization is reached the wines should be properly preserved from further oxidation using SO2 and taking into account the level of acetaldehyde in wines

    Effect of different enological tannins on oxygen consumption, phenolic compounds, color and astringency evolution of aglianico wine

    Get PDF
    Background: In the wine industry, in addition to condensed tannins of grape origin, other commercial tannins are commonly used. However, the influence of oxygen uptake related to different tannin additions during the post fermentative phase in wine has not been completely investigated. In this study, we evaluated the influence of four different commercial tannins (namely, condensed tannins, gallotannins, ellagitannins and tea tannins) during four saturation cycles. Method: Wine samples were added with four different tannin classes (30 g/hL) as to have 5 different experimental samples: control, gallotannins (GT), condensed tannins (CT), ellagitannins (ET), and tea tannins (TT). The chemical composition of the four commercially available tannin mixtures was defined by means of NMR and high-resolution mass spectrometry. After the addition of tannins, each wine sample was oxidized by air over four cycles of saturation. During the experiment oxygen consumption rate (OCR), sulfur dioxide consumption, acetaldehyde production, phenolic compounds, chromatic characteristics, astringency measured by the reactivity towards saliva proteins and astringency subqualities were evaluated. Results: The experiment lasted 52 days. The addition of tannins influenced the oxygen consumption on the 1st day of the saturation cycles and, in the case of TT, a higher total consumption of oxygen was also detected. Acetaldehyde increased during the experiment while the native anthocyanins decreased throughout the oxidation process. Conclusion: Wines added with tannins featured improved color intensities with respect to the control; the addition of TT, GT and ET slightly promoted the formation of short polymeric pigments; the astringency, determined before and at the end of the experiment, decreased in all the samples, including the control wine, and mostly in the ET and GT samples

    The management of dissolved oxygen by a polypropylene hollow fiber membrane contactor affects wine aging

    Get PDF
    Background: Numerous oenological practices can cause an excess of dissolved oxygen in wine, thus determining sensory and chromatic defects in the short‐ to long‐term. Hence, it is necessary to manage the excess of oxygen before bottling. Methods: In this study, the management of the dissolved oxygen content by a polypropylene hollow fiber membrane contactor apparatus was performed in two wines from different grape varieties (Aglianico and Falanghina). The wines were analyzed after an 11‐month aging. Anthocyanins and acetaldehyde content were evaluated by HPLC. In addition, other phenolic compounds and chromatic characteristics were analyzed by spectrophotometric methods. NMR and HR ESIMS analyses were conducted to evaluate the amount of pyranoanthocyanins and polymeric pigments. Results: After 11 months of aging, in both wines a decrease of free and total SO2 with respect to initial values was detected. In the wines with the highest dissolved oxygen levels, a more remarkable loss was observed. No significant differences in terms of color parameters were detected. In red wine with the highest oxygen content, a massive formation of polymeric pigments and BSA reactive tannins was observed, as opposed to wines with lower oxygen levels. Conclusion: The study demonstrated that the membrane contactor can prove a successful tool to manage dissolved oxygen in wines as to prevent their oxidative spoilage. © 2021 by the authors. Licensee MDPI, Basel, Switzerland

    Impact of 5-year bottle aging under controlled oxygen exposure on sulfur dioxide and phenolic composition of tannin-rich red wines

    Get PDF
    Aim: This study aims at understanding the impact of the initial phenolic composition on the evolution of red wines after long bottle aging.Materials and results: three different red wines rich in tannins, Aglianico, Casavecchia and Pallagrello, bottled with the same amount of total sulfur dioxide and different amounts of free sulfur dioxide, were analysed after 5 years of bottle aging under controlled exposure to oxygen passing through the closure. Acetaldehyde and monomeric anthocyanins were determined by HPLC, the chromatic characteristics and the main phenolic classes by spectrophotometry, the saliva precipitation index (SPI) by CHIP electrophoresis, and the astringency subqualities by sensory analysis. The results confirmed that during aging there is an increase in polymerisation reactions. A higher amount of acetaldehyde was detected in wines which were bottled with a lower content of free SO2 and were less rich in anthocyanins and tannins; a significant closure effect was observed for these wines. Regarding the influence of closure on tannins, significant slight differences in vanilline reactive flavans and SPI content were observed for Pallagrello wines only, which were characterised by higher values for tannins at bottling. Astringency subqualities differed with closures for each wine.Conclusion: this study indicates that the amount of initial free and combined sulfur dioxide, as well as that of anthocyanins and tannins, are key factors in driving polymerisation reactions and the aging of red wines. After five years of bottle aging the influence of closure could still be observed.Significance of the study: this study provides new insights into the parameters that need to be evaluated before bottling in order to avoid the wrong evolution of red wines after long bottle aging

    Phenolic Profiles of Red Wine Relate to Vascular Endothelial Benefits Mediated by SIRT1 and SIRT6

    Get PDF
    Dietary phenolic compounds possess potent bioactivity against inflammatory pathways of chronic inflammatory conditions, such as type 2 diabetes. Here, the phenolic profile and bioac-tivity of Italian red wines Gaglioppo, Magliocco, and Nerello Mascalese were characterized. NMR, HPLC/UV-Vis and spectrophotometric characterization showed that Magliocco was the richest wine in monomeric anthocyanins (two-fold), catechins, and low molecular weight phenolics (LMWP). A positive correlation was observed between the polyphenolic content and antioxidant capacity (p < 0.05), with Magliocco displaying the highest antioxidant capacity (p < 0.01). In vitro evidence on the endothelial cell models of insulin resistance and hyperglycemia showed the ability of Magliocco to reduce reactive oxygen species (ROS) (p < 0.01) and cytokine release (p < 0.01) and to upregulate SIRT1 and SIRT6 (p < 0.01). On the whole, the results indicated that the quantitative and qualitative phenolic profiles of red wines influence their in vitro beneficial effects on oxidative and proinflammatory milieu in endothelial cells, showing a positive modulation of SIRT1 and SIRT6, both implied in vascular aging

    Investigating the impact of pedoclimatic conditions on the oenological performance of two red cultivars grown throughout southern Italy

    Get PDF
    The cultivated grapevine, Vitis vinifera subsp. vinifera, possesses a rich biodiversity with numerous varieties. Each variety adapts differently to varying pedoclimatic conditions, which greatly influence the terroir expression of wine regions. These conditions impact vine growth, physiology, and berry composition, ultimately shaping the unique characteristics and typicity of the wines produced. Nowadays, the potential of the different adaptation capacities of grape varieties has not yet been thoroughly investigated. We addressed this issue by studying two grape varieties, Aglianico and Cabernet Sauvignon, in two different pedoclimatic conditions of Southern Italy. We evaluated and compared the effect of different pedoclimatic conditions on plant physiology, the microbial quality of grapes using Next-Generation Sequencing (NGS) technology, the expression trends of key genes in ripe berries and the concentration of phenolic compounds in grapes and wines by HPLC-MS, HPLC-DAD, NMR and spectrophotometric analyses. Metabolomic and microbiome data were integrated with quantitative gene expression analyses to examine varietal differences and plasticity of genes involved in important oenological pathways. The data collected showed that the phenotypic response of studied grapes in terms of vigor, production, and fruit quality is strongly influenced by the pedoclimatic conditions and, in particular, by soil physical properties. Furthermore, Aglianico grape variety was more influenced than the Cabernet Sauvignon by environmental conditions. In conclusion, the obtained findings not only reinforce the terroir concept and our comprehension of grape’s ability to adapt to climate variations but can also have implications for the future usage of grape genetic resources

    DICER1 Syndrome: A Multicenter Surgical Experience and Systematic Review

    Get PDF
    DICER1 syndrome is a rare genetic disorder that predisposes patients to the development of malignant and non-malignant diseases. Presently, DICER1 syndrome diagnosis still occurs late, usually following surgical operations, affecting patients' outcomes, especially for further neoplasms, which are entailed in this syndrome. For this reason, herein we present a multicenter report of DICER1 syndrome, with the prospective aim of enhancing post-surgical surveillance. A cohort of seven patients was collected among the surgical registries of Pediatric Surgery at the University of Pisa with the General and Oncologic Surgery of Federico II, University of Naples, and the Pediatric Surgery, Regina Margherita Hospital, University of Turin. In each case, the following data were analyzed: sex, age at diagnosis, age at first surgery, clinical features, familial, genetic investigations, and follow-up. A comprehensive literature review of DICER1 cases, including case reports and multicenter studies published from 1996 to June 2022, was performed. Eventually, the retrieved data from the literature were compared with the data emerging from our cohort of patients

    Goodbye Hartmann trial: a prospective, international, multicenter, observational study on the current use of a surgical procedure developed a century ago

    Get PDF
    Background: Literature suggests colonic resection and primary anastomosis (RPA) instead of Hartmann's procedure (HP) for the treatment of left-sided colonic emergencies. We aim to evaluate the surgical options globally used to treat patients with acute left-sided colonic emergencies and the factors that leading to the choice of treatment, comparing HP and RPA. Methods: This is a prospective, international, multicenter, observational study registered on ClinicalTrials.gov. A total 1215 patients with left-sided colonic emergencies who required surgery were included from 204 centers during the period of March 1, 2020, to May 31, 2020. with a 1-year follow-up. Results: 564 patients (43.1%) were females. The mean age was 65.9 ± 15.6&nbsp;years. HP was performed in 697 (57.3%) patients and RPA in 384 (31.6%) cases. Complicated acute diverticulitis was the most common cause of left-sided colonic emergencies (40.2%), followed by colorectal malignancy (36.6%). Severe complications (Clavien-Dindo ≥ 3b) were higher in the HP group (P &lt; 0.001). 30-day mortality was higher in HP patients (13.7%), especially in case of bowel perforation and diffused peritonitis. 1-year follow-up showed no differences on ostomy reversal rate between HP and RPA. (P = 0.127). A backward likelihood logistic regression model showed that RPA was preferred in younger patients, having low ASA score (≤ 3), in case of large bowel obstruction, absence of colonic ischemia, longer time from admission to surgery, operating early at the day working hours, by a surgeon who performed more than 50 colorectal resections. Conclusions: After 100&nbsp;years since the first Hartmann's procedure, HP remains the most common treatment for left-sided colorectal emergencies. Treatment's choice depends on patient characteristics, the time of surgery and the experience of the surgeon. RPA should be considered as the gold standard for surgery, with HP being an exception
    corecore