48 research outputs found

    Diversity of modes of reproduction and sex determination systems in invertebrates, and the putative contribution of genetic conflict

    Get PDF
    About eight million animal species are estimated to live on Earth, and all except those belonging to one subphylum are invertebrates. Invertebrates are incredibly diverse in their morphologies, life histories, and in the range of the ecological niches that they occupy. A great variety of modes of reproduction and sex determination systems is also observed among them, and their mosaic-distribution across the phylogeny shows that transitions between them occur frequently and rapidly. Genetic conflict in its various forms is a long-standing theory to explain what drives those evolutionary transitions. Here, we review (1) the different modes of reproduction among invertebrate species, highlighting sexual reproduction as the probable ancestral state; (2) the paradoxical diversity of sex determination systems; (3) the different types of genetic conflicts that could drive the evolution of such different systems

    Schistosome W-Linked genes inform temporal dynamics of sex chromosome evolution and suggest candidate for sex determination

    Get PDF
    Schistosomes, the human parasites responsible for snail fever, are female-heterogametic. Different parts of their ZW sex chromosomes have stopped recombining in distinct lineages, creating “evolutionary strata” of various ages. Although the Z-chromosome is well characterized at the genomic and molecular level, the W-chromosome has remained largely unstudied from an evolutionary perspective, as only a few W-linked genes have been detected outside of the model species Schistosoma mansoni. Here, we characterize the gene content and evolution of the W-chromosomes of S. mansoni and of the divergent species S. japonicum. We use a combined RNA/DNA k-mer based pipeline to assemble around 100 candidate W-specific transcripts in each of the species. About half of them map to known protein coding genes, the majority homologous to S. mansoni Z-linked genes. We perform an extended analysis of the evolutionary strata present in the two species (including characterizing a previously undetected young stratum in S. japonicum) to infer patterns of sequence and expression evolution of W-linked genes at different time points after recombination was lost. W-linked genes show evidence of degeneration, including high rates of protein evolution and reduced expression. Most are found in young lineage-specific strata, with only a few high expression ancestral W-genes remaining, consistent with the progressive erosion of nonrecombining regions. Among these, the splicing factor u2af2 stands out as a promising candidate for primary sex determination, opening new avenues for understanding the molecular basis of the reproductive biology of this group

    Influence of snow surface properties on L-band brightness temperature at Dome C, Antarctica

    No full text
    International audienceL-band radiometer measurements collected over the Dome C area from 2010 to 2015 indicated that the brightness temperature (T B) was relatively stable at vertical (V) polarization (standard deviation lower than 1 K at annual scale), while it was slightly more variable at horizontal (H) polarization. During the 2014-2015 austral summer, an exceptional situation was recorded by both the DOMEX ground radiometer and the European Space Agency (ESA)'s Soil Moisture and Ocean Salinity (SMOS) satellite. From November 2014 to March 2015, T B H showed a progressive and significant increase until 20 March 2015 when it sharply decreased by about 5 K (at 52.5 o incidence angle) within a few days. In parallel to the increase in T B H, glaciological and meteorological in situ measurements showed a wind speed that was lower than usual and a low-density snow layer being progressively set up on the surface. This was consistent with the exceptional hoar event observed, as well as with snow accumulation on the surface. On the other hand, the decrease in T B H was related to the passing over Dome C of a storm that removed or compacted the layer of light snow on the surface. The WALOMIS (Wave Approach for LOw-frequency MIcrowave emission in Snow) snow-emission model was used with in situ measurements of the snowpack as inputs for evaluating the effect of changes observed on the snow surface in T B H. The simulations indicated that the surface snow density variations were sufficient for predicting the increasing and decreasing trends of the T B H. However, the thickness variations of the superficial layer were essential so as to obtain a better agreement with the SMOS observations. This result confirmed that the L-band T B H was affected by the snow properties of the top centimeters of the snowpack, in spite of the large penetration depth (hundreds of meters). Both the surface snow density and the thickness of the superficial layer were relevant, due to coherent interference effects

    Parent-of-Origin-Dependent Gene Expression inMale and Female Schistosome Parasites

    Get PDF
    Schistosomes are the causative agents of schistosomiasis, a neglected tropical disease affecting over 230 million peopleworldwide. Additionally to theirmajor impact onhuman health, they are alsomodels of choice in evolutionary biology. These parasitic flatworms are unique among the common hermaphroditic trematodes as they have separate sexes. This so-called "evolutionary scandal" displays a female heterogametic genetic sex-determination system(ZZ males and ZWfemales), aswell as a pronounced adult sexual dimorphism. These phenotypic differences are determined by a shared set of genes in both sexes, potentially leading to intralocus sexual conflicts. To resolve these conflicts in sexually selected traits, molecularmechanisms such as sex-biased gene expression could occur, but parent-of-origin gene expression also provides an alternative. In this work we investigated the lattermechanism, that is, genes expressed preferentially from either the maternal or the paternal allele, in Schistosoma mansoni species. To this end, transcriptomes from male and female hybrid adults obtained by strain crosses were sequenced. Strain-specific single nucleotide polymorphism (SNP) markers allowed us to discriminate the parental origin, while reciprocal crosses helped to differentiate parental expression from strain-specific expression. We identified genes containing SNPs expressed in a parent-of-origin manner consistent with paternal and maternal imprints. Although the majority of the SNPs was identified in mitochondrial and Z-specific loci, the remaining SNPs found inmale and female transcriptomeswere situated in genes that have the potential to explain sexual differences in schistosome parasites. Furthermore, we identified and validated four new Z-specific scaffolds

    Dosage Compensation throughout the Schistosoma mansoni Lifecycle: Specific Chromatin Landscape of the Z Chromosome

    Get PDF
    Differentiated sex chromosomes are accompanied by a difference in gene dose between X/Z-specific and autosomal genes. At the transcriptomic level, these sex-linked genes can lead to expression imbalance, or gene dosage can be compensated by epigenetic mechanisms and results into expression level equalization. Schistosoma mansoni has been previously described as a ZW species (i.e., female heterogamety, in opposition to XY male heterogametic species) with a partial dosage compensation, but underlying mechanisms are still unexplored. Here, we combine transcriptomic (RNA-Seq) and epigenetic data (ChIP-Seq against H3K4me3, H3K27me3, and H4K20me1 histone marks) in free larval cercariae and intravertebrate parasitic stages. For the first time, we describe differences in dosage compensation status in ZW females, depending on the parasitic status: free cercariae display global dosage compensation, whereas intravertebrate stages show a partial dosage compensation. We also highlight regional differences of gene expression along the Z chromosome in cercariae, but not in the intravertebrate stages. Finally, we feature a consistent permissive chromatin landscape of the Z chromosome in both sexes and stages. We argue that dosage compensation in schistosomes is characterized by chromatin remodeling mechanisms in the Z-specific region

    The Epigenome of Schistosoma mansoni Provides Insight about How Cercariae Poise Transcription until Infection

    No full text
    Background Chromatin structure can control gene expression and can define specific transcription states. For example, bivalent methylation of histone H3K4 and H3K27 is linked to poised transcription in vertebrate embryonic stem cells (ESC). It allows them to rapidly engage specific developmental pathways. We reasoned that non-vertebrate metazoans that encounter a similar developmental constraint (i.e. to quickly start development into a new phenotype) might use a similar system. Schistosomes are parasitic platyhelminthes that are characterized by passage through two hosts: a mollusk as intermediate host and humans or rodents as definitive host. During its development, the parasite undergoes drastic changes, most notable immediately after infection of the definitive host, i.e. during the transition from the free-swimming cercariae into adult worms. Methodology/Principal Findings We used Chromatin Immunoprecipitation followed by massive parallel sequencing (ChIP-Seq) to analyze genome-wide chromatin structure of S. mansoni on the level of histone modifications (H3K4me3, H3K27me3, H3K9me3, and H3K9ac) in cercariae, schistosomula and adults (available at http://genome.univ-perp.fr). We saw striking differences in chromatin structure between the developmental stages, but most importantly we found that cercariae possess a specific combination of marks at the transcription start sites (TSS) that has similarities to a structure found in ESC. We demonstrate that in cercariae no transcription occurs, and we provide evidences that cercariae do not possess large numbers of canonical stem cells. Conclusions/Significance We describe here a broad view on the epigenome of a metazoan parasite. Most notably, we find bivalent histone H3 methylation in cercariae. Methylation of H3K27 is removed during transformation into schistosomula (and stays absent in adults) and transcription is activated. In addition, shifts of H3K9 methylation and acetylation occur towards upstream and downstream of the transcriptional start site (TSS). We conclude that specific H3 modifications are a phylogenetically older and probably more general mechanism, i.e. not restricted to stem cells, to poise transcription. Since adult couples must form to cause the disease symptoms, changes in histone modifications appear to be crucial for pathogenesis and represent therefore a therapeutic target

    Sex-Biased Transcriptome of Schistosoma mansoni: Host-Parasite Interaction, Genetic Determinants and Epigenetic Regulators Are Associated with Sexual Differentiation

    No full text
    Background Among more than 20,000 species of hermaphroditic trematodes, Schistosomatidae are unusual since they have evolved gonochorism. In schistosomes, sex is determined by a female heterogametic system, but phenotypic sexual dimorphism appears only after infection of the vertebrate definitive host. The completion of gonad maturation occurs even later, after pairing. To date, the molecular mechanisms that trigger the sexual differentiation in these species remain unknown, and in vivo studies on the developing schistosomulum stages are lacking. To study the molecular basis of sex determination and sexual differentiation in schistosomes, we investigated the whole transcriptome of the human parasite Schistosoma mansoni in a stage-and sex-comparative manner. Methodology/Principal Findings We performed a RNA-seq on males and females for five developmental stages: cercariae larvae, three in vivo schistosomulum stages and adults. We detected 7,168 genes differentially expressed between sexes in at least one of the developmental stages, and 4,065 of them were functionally annotated. Transcriptome data were completed with H3K27me3 histone modification analysis using ChIP-Seq before (in cercariae) and after (in adults) the phenotypic sexual dimorphism appearance. In this paper we present (i) candidate determinants of the sexual differentiation, (ii) sex-biased players of the interaction with the vertebrate host, and (iii) different dynamic of the H3K27me3 histone mark between sexes as an illustration of sex-biased epigenetic landscapes. Conclusions/Significance Our work presents evidence that sexual differentiation in S. mansoni is accompanied by distinct male and female transcriptional landscapes of known players of the host-parasite crosstalk, genetic determinants and epigenetic regulators. Our results suggest that such combination could lead to the optimized sexual dimorphism of this parasitic species. As S. mansoni is pathogenic for humans, this study represents a promising source of therapeutic targets, providing not only data on the parasite development in interaction with its vertebrate host, but also new insights on its reproductive function
    corecore