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Abstract

Differentiated sex chromosomes are accompanied by a difference in gene dose between X/Z-specific and autosomal genes. At the

transcriptomic level, these sex-linked genes can lead to expression imbalance, or gene dosage can be compensated by epigenetic

mechanisms and results into expression level equalization. Schistosoma mansoni has been previously described as a ZW species (i.e.,

female heterogamety, in opposition to XY male heterogametic species) with a partial dosage compensation, but underlying

mechanisms are still unexplored. Here, we combine transcriptomic (RNA-Seq) and epigenetic data (ChIP-Seq against H3K4me3,

H3K27me3,andH4K20me1histonemarks) in free larval cercariaeand intravertebrateparasitic stages. For thefirst time,wedescribe

differences in dosage compensation status in ZW females, depending on the parasitic status: free cercariae display global dosage

compensation, whereas intravertebrate stages show a partial dosage compensation. We also highlight regional differences of gene

expression along the Z chromosome in cercariae, but not in the intravertebrate stages. Finally, we feature a consistent permissive

chromatin landscape of the Z chromosome in both sexes and stages. We argue that dosage compensation in schistosomes is

characterized by chromatin remodeling mechanisms in the Z-specific region.

Key words: dosage compensation, chromatin landscape, histone modifications, female heterogamety, Schistosoma

mansoni.

Introduction

Sex determination systems are very diverse and can involve

genetic and/or epigenetic based mechanisms (Bachtrog et al.

2014). Genetic sex determination has been widely studied

and often involves well-differentiated pairs of sex chromo-

somes: X and Y in male heterogametic systems, or Z and W

in female-heterogametic systems. Morphological and gene

content differences arise between the sex-specific Y/W

and the shared X/Z chromosomes after their evolution

from an ancestral pair of autosomes (Charlesworth 1991;

Charlesworth et al. 2005). Successive events of recombination

suppression (Rice 1987; Bergero and Charlesworth 2009)

result in the accumulation of deleterious mutations and lead

to the degeneration of the Y/W heterochromosome

(Engelstadter 2008). Consequently, the sex carrying the

degenerated Y/W harbors a certain number of genes in a

single X/Z-linked copy. In the absence of mechanisms to

buffer expression levels, such monosomy in a diploid genome

is expected to induce detrimental effects on finely tuned gene

networks (Veitia 2005). Mechanisms of gene expression reg-

ulation have evolved independently across eukaryotes to com-

pensate for this gene dose imbalance and are grouped

together under the name “dosage compensation.” In the

case of global dosage compensation, the overall expression

level of monosomic genes on the heterochromosome (i.e., X/

Z-specific genes) is equal to the overall diploid expression level

of autosomal genes (i.e., X/AA or Z/AA ratio of 1, “A” stand-

ing for the autosomal expression) (Vicoso and Bachtrog

2009). Conversely, the gene dose can be only partially com-

pensated and the average expression of monosomic X/Z-

specific genes will then be below the average expression of

the diploid autosomes. This X/Z-specific gene expression value
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is typically not equal to half the dose of autosomal genes, as

would be expected in the total absence of compensation, but

instead reaches 60–80% of autosomal expression (i.e., X/AA

or Z/AA ratio of 0.6–0.8). This is thought to reflect a combi-

nation of general buffering mechanisms (Stenberg et al.

2009) and/or the individual upregulation of dosage-sensitive

sex-linked genes, that is, a “gene-by-gene” mechanism of

compensation (Mank 2009). Global dosage compensation

was initially thought to be not only 1) the rule but also 2)

the preserve of XY systems. Both considerations are actually

controversial, and many studies have challenged this canoni-

cal view. First, global compensation is not an absolute rule

among XY species: initially, “chromosome-wide” compensa-

tion was described in both vertebrate and invertebrate XY

model species, as well as a variety of non-model organisms

(e.g., Caenorhabditis elegans: Lau and Csankovszki 2015;

Drosophila: Georgiev et al. 2011; Pea aphid: Jaqui�ery et al.

2013; Hemipteran: Pal and Vicoso 2015; Mammals: Nguyen

and Disteche 2006; Livebearer fishes: Darolti et al. 2019; and

other vertebrates, reviewed in Graves 2016). Thereafter, the

multiplicity of studies carried in a broad range of species ac-

tually highlighted a lack of global dosage compensation in

vertebrates as well as in invertebrate (Xiong et al. 2010;

Mank 2013; Hurst et al. 2015; Gu and Walters 2017 for re-

view). Instead other strategies were observed, such as a gene-

by-gene mechanism with an increase of only some X-linked

genes (Lin et al. 2012; Pessia et al. 2012; Albritton et al. 2014),

the decreased expression of autosomal genes (Julien et al.

2012), or duplication-translocation of X-linked genes to auto-

somes (Hurst et al. 2015). Second, global compensation is not

the preserve of XY systems: recent studies have shown that

non-model ZW species also display total equalization of ex-

pression between Z-specific genes and autosomes

(Lepidoptera: Walters and Hardcastle 2011; Kiuchi et al.

2014; Gu and Walters 2017; Huylmans et al. 2017; Artemia

franciscana crustacean species: Huylmans et al. 2019). This is

in contradiction to earlier studies in which only partial com-

pensation was documented in many ZW female heterochro-

matic clades: birds (Itoh et al. 2007; Naurin et al. 2011; Wolf

and Bryk 2011; Uebbing et al. 2015), arthropods (Harrison

et al. 2012; Mahajan and Bachtrog 2015), snakes (Vicoso

et al. 2013), flatfish Cynoglossus semilaevis (Chen et al.

2014), and metazoan parasites of the genus Schistosoma

(Vicoso and Bachtrog 2011; Picard et al. 2018).

Schistosomes are blood flukes responsible for schistosomi-

asis, an infectious disease affecting more than 230 million

people worldwide (Colley et al. 2014, for review). The model

species Schistosoma mansoni has a complex life cycle, char-

acterized by 1) clonal multiplication in a freshwater snail of the

Biomphalaria genus, the intermediate host and 2) sexual re-

production in a definitive vertebrate host (i.e., a primate or

rodent species). The parasite’s eggs are released in freshwater

via the feces. Free-living larvae (miracidia) hatch out and infect

the mollusk intermediate host, transforming into sporocysts.

Sporocyst clonal multiplication inside the mollusk ultimately

leads to thousands of infective cercariae, which are in turn

released into fresh water. Definitive host penetration occurs

through the epidermis and is followed by drastic morpholog-

ical and physiological transformations: 1) within 2 hours, the

free-living larvae become obligatory endoparasitic schistoso-

mula; 2) after 2–5 weeks within the definitive host, these

schistosomula develop from 150-lm juvenile sexually undif-

ferentiated individuals into 1-cm adults. Schistosoma is the

only genus displaying separate sexes among flatworms

(Basch 1990; Combes 1991). Sex is genetically determined,

with ZZ males and ZW females (Grossman et al. 1981), but no

apparent phenotypic sexual dimorphism exists from the egg

to the early stages of schistosomula. Phenotypic differences

between males and females (i.e., sexual dimorphism) appear

only in late intravertebrate stages (Loker and Brant 2006). In

addition, male and female worms remain immature (i.e., sex-

ually nonfunctional) until pairing. In particular, mated females

undergo extensive morphological changes and develop their

reproductive organs (Erasmus 1973; Neves et al. 2005).

Schistosomes, and particularly S. mansoni, have well-differ-

entiated sex chromosomes: the W chromosome is mostly het-

erochromatic and carries many repetitive sequences (Portela

et al. 2010; Lepesant et al. 2012; Protasio et al. 2012); 1,067

Z-specific genes have been identified thus far (Protasio et al.

2012; Picard et al. 2018). These Z-specific genes are consis-

tently male-biased in expression, which was initially inter-

preted as absence of a global mechanism of dosage

compensation (Vicoso and Bachtrog 2011). It was recently

suggested that instead schistosomes have partially upregu-

lated their Z chromosome in response to gene loss on the

W (Picard et al. 2018), but that this upregulation occurred

in both sexes (thereby partially balancing dosage in females,

but maintaining the male-bias in expression). The conclusions

of these studies were limited by several drawbacks. First, only

older, vertebrate-infecting, stages were considered. Gene bal-

ance is thought to be most crucial in the earlier stages of

development because of a higher number of functional inter-

actions (Cutter and Ward 2005; Davis et al. 2005; Artieri et al.

2009; Mank and Ellegren 2009), and missing these early

stages could lead to an underestimation of the extent to

which compensation occurs. Similarly, male-biased expression

can be due to genes with male-specific functions, which

should largely be absent before the onset of sexual differen-

tiation. Characterizing the sex-bias of Z-specific genes

throughout development is therefore crucial to fully under-

stand the dynamics of dosage compensation in this group.

Second, fully distinguishing between local and global mech-

anisms of compensation requires an understanding of the

molecular processes at work. In particular, well-studied chro-

mosome-wide mechanisms of dosage compensation are

characterized by global and extensive changes in the epige-

netic landscape of the affected sex chromosome (Lucchesi

et al. 2005; Lucchesi 2018). For instance, active chromatin
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marks are strongly enriched on the Drosophila male X,

whereas the inactivated mammalian X chromosome of

females is characterized by DNA methylation and widespread

repressive chromatin marks (Lucchesi et al. 2005; Brockdorff

and Turner 2015). On the chicken Z chromosome, a local and

female-specific hyperacetylation of the fourth histone

(H4K16Ac) has been described (Bisoni et al. 2005). Apart

from this study, the detailed characterization of sex-linked

histone chromatin marks is entirely lacking in ZW species, se-

verely limiting our mechanistic understanding of dosage

equalization in these groups.

Here, we systematically assess gene expression regulation

along the Z chromosome of S. mansoni by combining tran-

scriptomic (RNA-Seq) and epigenomic (ChIP-Seq) data. We

focus on three different developmental stages: 1) cercariae

(RNA-Seq and ChIP-Seq): these free larvae are the last fully

sexually undifferentiated stage before host penetration; 2)

schistosomula (RNA-Seq): the schistosomula were at an ad-

vanced stage of development but lacked phenotypic dimor-

phism (Picard et al. 2016); and 3) immature worms (RNA-Seq

and ChIP-Seq): male and female parasite displaying sexual

dimorphism, but sexually immature as they were not mated.

Materials and Methods

Publicly Available RNA-Seq and ChIP-Seq Reads

This study is mainly based on publicly available data that were

previously generated in our laboratory. Transcriptomic data

(i.e., total RNA isolation followed by single-read 50 nucleoti-

des Illumina sequencing) for both sexes in cercariae, schisto-

somula (stage S#2), and immature worms were described in

Picard et al. 2016 (raw reads are available under accession

number SRP071285 on NCBI-SRA database). As for epige-

netic data (i.e., chromatin immunoprecipitation, or ChIP, fol-

lowed by single-read 50 nucleotides Illumina sequencing):

H3K27me3 ChIP-Seq was analyzed in Picard et al. 2016

(male data available under accession number SRP071285);

H3K27me3, H3K4me3, and H3K20me1 ChIP-Seq in females

were reported in Roquis et al. 2016 and Roquis et al. 2018 (all

data available on SRP035609). Accession numbers for each

studied library are provided in table 1.

Newly Generated H3K4me3 ChIP-Seq Data in Males

Two biological replicates of male cercaria (2� 10,000 individ-

uals) and immature worms (2� 20 individuals) were respec-

tively obtained by monoclonal infection of Biomphalaria

glabrata followed by unisex infection of Swiss OF1 mice

(Picard et al. 2016 for details). Native chromatin immunopre-

cipitation assay was done according to Cosseau et al. (2009)

using 4ml of H3K4me3 antibody (Millipore, cat. number

04-745, lot number NG1680351). Further details are available

at http://methdb.univ-perp.fr/epievo/; Last accessed June 27,

2019. ChIP library construction and sequencing were per-

formed at the sequencing facilities of Montpellier GenomiX

(MGX, France). Briefly, TruSeq ChIP sample preparation kit

(Illumina Inc., USA) was used according to the manufacturer’s

recommendations on 30 ng of DNA per condition. DNAs

were blunt ended and adenylated on 30 ends. Illumina’s

indexed adapters were ligated to both ends, and resulting

ligated DNA were enriched by polymerase chain reaction

(PCR). PCR products were separated by size using electropho-

resis and 400 base pairs (bp) fragments were selected. The

quantitative analysis of the DNA library was carried on Agilent

High Sensitivity chip and qPCR (Applied Biosystems 7500,

SYBR Green). Finally, the sequencing was performed on a

HiSeq2500 in single-read 50-nt mode.

RNA-Seq Raw Read Processing

Raw RNA-Seq reads were cleaned using trimmomatic v0.3

(Bolger et al. 2014), with the following options: SE -

phred33 ILLUMINACLIP:�/Trimmomatic-0.36/adapters/

TruSeq3-SE.fa:2:30:10 HEADCROP:12 LEADING:3

TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:36. Resulting

high quality reads were mapped to the S. mansoni reference

genome v5.2 obtained on the WormBase Parasite database

(schistosoma_mansoni.PRJEA36577.WBPS9.genomic.fa, at

https://parasite.wormbase.org/index.html; Last accessed June

27, 2019) using Tophat2 (Trapnell et al. 2009), with the fol-

lowing options: –library-type fr-firststrand –microexon-search

-i 10 -I 40000 –min-segment-intron 10 –max-segment-intron

40000. Mapped reads were counted using Htseq (Anders

et al. 2015), with the following options: -f bam -s reverse -

m union –idattr gene_id (see read counts in supplementary

Data 1, Supplementary Material online). Normalized expres-

sion values (in Reads Per Kilobase of transcript per Million

mapped reads, RPKM) were calculated for all genes and sam-

ples (supplementary Data 2, Supplementary Material online).

Gene Expression Analysis According to Genomic Location

Gene location was based on GTF annotations obtained at

WormbaseParasite (schistosoma_mansoni.PRJEA36577.WB

PS9.canonical_geneset.gtf, https://parasite.wormbase.org/in-

dex.html; Last accessed June 27, 2019). More precisely, genes

located on the ZW sex chromosome linkage map were then

attributed either to the Z-specific region or to pseudoautoso-

mal regions (PARs) depending on their coordinates (Z-specific

windows: Z1: 3,550,000–13,340,000; Z2: 13,860,000–

19,650,000; Z3: 23,230,000–30,820,000, supplementary

Data 3, Supplementary Material online) (Protasio et al.

2012). Normalized expression data combined to gene loca-

tions were then implemented into an R script for drawing

gene expression patterns (supplementary Data 4,

Supplementary Material online). This R script is available as

supplementary Methods 1, Supplementary Material online.
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Briefly, a Loess Normalization (R library Affy) was performed,

taking into account the 12 libraries (cercariae, schistosomula,

immature worms, for both sexes, and in duplicate). For each

sex and stage, the averaged expression was then considered.

Different thresholds for minimum of expression level were

applied (RPKM> 0, RPKM> 1, and RPKM> 5), and strong

sex-bias were considered or not. These strong sex-bias were

defined by a fold change higher than 2, considering either the

female-to-male ratio (female sex-bias), or the male-to-female

ratio (male sex-bias). When comparing two conditions, the

ratio between the medians of expression was calculated,

and the level of significance was tested with Wilcoxon rank

sum tests with continuity correction. In the figures, signifi-

cance is showed by stars: *P value< 0.05, **P value< 0.001,

and ***P value< 0.0001.

ChIP-Seq Raw Read Processing

ChIP-Seq data treatment was carried out under a local galaxy

instance (Goecks et al. 2010). After quality check (Andrews

2010), neither quality filtering nor trimming was applied and

all the reads were mapped to the S. mansoni reference ge-

nome (assembly version 5.2) (Protasio et al. 2012), using

Bowtie2 (Langmead and Salzberg 2012). Mapping quality in

Bowtie 2 is related to “uniqueness” of the read. SAM align-

ment files were converted into the bed format with pyicos

(Althammer et al. 2011) and sorted with sortBed -i of the

bedtools suite (Quinlan et al. 2011).

Comparative EpiChIP Analysis

Average histone modification profiles around transcriptional

start site (TSS) of the genes were generated by doing a win-

dow analysis from �1,000 to þ5,000 base pairs relative to

this TSS, using EpiChIP v0.9.7-e (Hebenstreit et al. 2011). As

input, we used the 23 million, 6 million, and 19 million ran-

domly sampled mapped reads that were generated after the

alignment step for H3K27me3, H3K4me3, and H4K20me1,

respectively. The average histone profiles were generated on

the chromosome 1 and independently on the Z-specific re-

gion and the PAR of the ZW sex chromosomes. For this pur-

pose, we used the GTF annotation file generated previously

(Picard et al. 2016) (available under id “Schistosoma mansoni

sex-specific transcriptome” at http://ihpe.univ-perp.fr/acces-

aux-donnees/; Last accessed June 27, 2019) and selected

6,225 transcripts on chromosome 1, 2,421 transcripts

(¼ 2421) on the Z-specific region, and 3,376 on the PAR.

The average H3K4me3, H3K27me3, and input profiles (i.e.,

control without antibody) were generated for the two male

biological replicates and the three female biological replicates

(Supplementary Data 6 and 7, Supplementary Material on-

line). The average H4K20me1, and input profiles were gen-

erated for the three female biological replicates

(Supplementary Data 8, Supplementary Material online).

Each average profile was normalized with its respective input

average profile in order to be able to compare the different

regions, whatever the number of genes in the considered

Table 1

Publicly Available RNA-Seq and ChIP-Seq Data Used in This Study

Males ChIP-Seq, SRP071285 RNA-Seq, SRP071285

H3K4me3 H3K27me3 H4K20me1 Unbound

Cercariae SRX1631014 SRX1630978 — SRX1631082 SRX1623575

SRX1630986 SRX1630768 — SRX1631034 SRX1619495

Schistosomula — — — SRX1630045

— — — SRX1630044

Immature worms SRX1631176 SRX1631108 — SRX1631199 SRX1630049

SRX1631160 SRX1631129 — SRX1631198 SRX1630048

Females ChIP-Seq, SRP035609 RNA-Seq, SRP071285

H3K4me3 H3K27me3 H4K20me1 Unbound

Cercariae SRX1592114 SRX1592113 SRX1592115 SRX1592116 SRX1630050

SRX1592110 SRX1592109 SRX1592111 SRX1592107 SRX1630051

SRX1592105 SRX1592103 SRX1592106 SRX1592102 —

Schistosomula — — — — SRX1630059

— — — — SRX1630060

Immature worms SRX1592144 SRX1592143 SRX1592145 SRX1592146 SRX1630064

SRX1592139 SRX1592138 SRX1592140 SRX1592141 SRX1630063

SRX1592134 SRX1592133 SRX1592135 SRX1592136 —

NOTE.—RNA-Seq and ChIP-Seq data were previously generated in our laboratory and were published in two different studies: SRP071285 accession number (SRA-NCBI
database) for RNA-Seq and male H3K27me3 ChIP-Seq duplicates (Picard et al. 2016); and SRP035609 accession number (SRA-NCBI database) for female ChIP-Seq triplicates (Roquis
et al. 2016). H3K4me3 ChIP-Seq analysis on males was never presented before and was deposited under SRP071285 accession number (SRA-NCBI database).
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region. The distribution of histone enrichment around the

transcription start site was compared according to the stage

and the genomic location using Kolmogorov–Smirnov two

sample tests.

Code Availability

R script for expression analysis is provided in supplementary

Methods 1, Supplementary Material online.

Results

Different Levels of Gene Expression Equalization
throughout Development

Gene expression was analyzed by using published RNA-Seq

data from male and female S. mansoni of three developmen-

tal stages, characterized by different parasitic status and levels

of sexual differentiation (Picard et al. 2016): cercariae, schis-

tosomula, and immature worms (Fig. 1A ). Other stages such

as miracidia or eggs were excluded because it is not possible

to distinguish males and females at this phase. To assess dos-

age compensation, we compared both the Z-to-autosome

ratio within each sex (Z:AA in females or ZZ:AA in males),

and the female-to-male ratio between sexes (Z[F:M]/A[F:M])

(table 2). Such comparisons support global dosage compen-

sation if the female Z:AA ratio and the Z(F:M)/A(F:M) ratio are

equal to one; lower ratios support a lack of global dosage

compensation. Different minimum expression thresholds

were applied, and strongly sex-biased genes (>2-fold differ-

ence between the sexes) were excluded, as the presence of

genes with sex-specific functions can also lead to male-biased

expression of sex chromosomes, even in the presence of

global dosage compensation (Huylmans et al. 2017). Gene

expression ratios and their level of significance are detailed

in table 2 for the three stages and six different methodological

conditions. In order to minimize noise but keep a reasonable

sample size, we focused on results obtained with a minimum

expression threshold of RPKM> 1 and excluding genes with a

sex-bias greater than 2-fold (Sample sizes are reported in

FIG. 1.—Gene expression level according to sex, developmental stage, and genomic location. Three developmental stages of the parasite are shown (A):

cercariae are free larvae without any sexual dimorphism (1); schistosomula represent an intravertebrate stage, with ongoing sexual differentiation but no

phenotypic sexual dimorphism (2); and immature worms are sexually differentiated but sexually non-functional as they did not mate (3). Expression of

autosomal genes (“A,” dark shade), pseudoautosomal genes (“PAR,” dark shade), and Z-specific genes (“Z,” light shade) is represented considering female-

to-male ratio (“F:M”) (B), or independently within females (C) and males (D). Only genes with expression RPKM>1, and a female-to-male fold change lower

than 2 (sex-bias filtering) are taken into account (n¼3,741 in cercariae; n¼5,636 in schistosomula; n¼5,657 in immature worms). The Z-to-autosome

expression ratio for each sex (Z:AA for female, and ZZ:AA for male), and the corresponding female-to-male ratio (Z[F:M]/A[F:M]) are detailed in table 2

(“RPKM> 1 - sex-bias filtered”). Asterisks show the level of significance for each of these comparisons (Wilcoxon test): *P value<0.05, **P value<0.001,

and ***P value<0.0001.
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Supplementary Table 1, Supplementary Material online), but

qualitative patterns generally hold for other filtering

procedures.

As observed before (Vicoso and Bachtrog 2011; Picard

et al. 2018), the female-to-male ratio of expression was al-

ways significantly lower on the Z than on the autosomes, and

this seemed to be due to both reduced Z:AA expression in

females (Z:AA from 0.75 to 1.05) and an excess of ZZ:AA

expression in males (ZZ:AA from 1.07 to 1.75) (Picard et al.

2018). However, there were important differences between

the developmental stages. First, the Z(F:M)/A(F:M) ratio

ranged from 0.60 to 0.90 (table 2C). Although part of this

variation was driven by the different filtering procedures, in

every case the value was closer to 1 for cercariae, consistent

with more extensive dosage compensation in early develop-

ment. For instance, for Z-specific genes with RPKM> 1 and

no strong sex-bias, Z(F:M)/A(F:M) was equal to 0.81, 0.70,

and 0.64 in cercariae, schistosomula, and immature worms,

respectively, with significant differences between the free lar-

val stage cercariae and the intravertebrate stages (P val-

ue< 0.0001, fig. 1B).

This difference in the extent of dosage equalization was

also apparent within one sex. In the females, discrepancies

were observed depending on the parasitic status and the fil-

tering method: for RPKM> 0, after sex-bias filtering, the Z-to-

autosome ratio (Z:AA) ranged from 0.75 in female schistoso-

mula (lower than 1, consistent with partial dosage compen-

sation) to 1.05 in female cercariae (equalized ratio, typical of

dosage global compensation) and was not always significant

from 1 (table 2A). This seemed to be largely driven by the

dichotomy between cercariae and intravertebrate stages

(fig. 1C): when considering genes with RPKM values above

1, and after filtering for sex-biased genes, Z-specific genes

and autosomes displayed an equalized expression in female

cercariae (Z:AA¼ 1.00 for RPKM> 1, Z:AA¼ 1.03 for

RPKM> 5), but not in female schistosomula or immature

worms (Z:AA¼ 0.76 and 0.87 for RPKM> 1, Z:AA¼ 0.90

and 0.80 for RPKM> 5). Although the specific numbers var-

ied, cercariae had the highest female Z:AA expression ratio for

all but one filtering procedures (RPKM> 0 and no removal of

strongly sex-biased genes), generally supporting the more ex-

tensive upregulation of expression of Z-linked genes in

females at this stage. Within males, the Z-to-autosome ratio

(ZZ:AA) was higher in all studied conditions (ranging from

1.07 to 1.75) although the level of significance varied depend-

ing on the filtering procedure (table 2B). For instance, consid-

ering genes with RPKM> 1 and no strong sex-bias, the ZZ:AA

ratios are 1.07, 1.12, and 1.27 for cercariae, schistosomula,

and immature worms, respectively (fig. 1D).

In summary, this first transcriptomic analysis of Z-specific

and autosomal genes throughout schistosome development

showed that 1) the overexpression of the male Z-specific

genes was found consistently in the three stages; 2) the fe-

male Z-to-autosome ratio was around 1 in cercariae, as

expected for global dosage compensation; and 3) the female

Z-to-autosome ratio was around 0.8 in the intravertebrate

stages, as expected when partial dosage compensation

occurs.

Regional Variation of Dosage Compensation along the
Z-Specific Region

In some species which display partial dosage compensation,

the female-to-male ratio has been shown to vary along the Z

chromosome, with some regions fully compensated, whereas

others are not compensated at all (e.g., Gallus gallus

Table 2

Ratio of Gene Expression between Sexes, and between Genomic Locations within Each Sex; According to Developmental Stages, and Methodological Filters

(A) $ Z:AA (B) # ZZ:AA (C) Z(F:M)/A(F:M)

Cerc. Som. Ad. Cerc. Som. Ad. Cerc. Som. Ad.

RPKM > 0 Ratio 1.02 0.94 1.04 1.74 1.66 1.75 0.60 0.66 0.66

P value N.S. N.S. N.S. *** *** *** *** *** ***

RPKM > 0, sex-bias filtered Ratio 1.05 0.75 1.00 1.48 1.10 1.34 0.82 0.76 0.66

P value N.S. N.S. N.S. ** N.S. * *** *** ***

RPKM > 1 Ratio 0.83 0.78 0.83 1.24 1.28 1.29 0.68 0.61 0.59

P value * ** * * *** *** *** *** ***

RPKM > 1, sex-bias filtered Ratio 1.00 0.76 0.87 1.07 1.12 1.27 0.81 0.70 0.64

P value N.S. * N.S. N.S. N.S. ** *** *** ***

RPKM > 5 Ratio 0.92 0.76 0.82 1.23 1.42 1.24 0.74 0.62 0.60

P value N.S. * * * *** *** *** *** ***

RPKM > 5, sex-bias filtered Ratio 1.03 0.90 0.80 1.22 1.41 1.17 0.90 0.72 0.64

P value N.S. N.S. * N.S. * * ** *** ***

NOTE.—The Z-to-autosome ratio are shown for females “Z:AA” (A) and males “ZZ:AA” (B) in cercariae (Cerc.), schistosomula (Som.), and immature worms (Ad.). Female-to-
male ratio of the Z-specific genes and of the autosomes are then compared for the three same stages “Z(F:M)/A(F:M)” (C). The filter on sex-bias excludes genes with a fold change
of expression above 2 in both directions (male:female or female:male). The level of significance for each comparison is indicated by the asterisks (Wilcoxon test):

*P value<0.05, **P value<0.001, and ***P value<0.0001.
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[Melamed and Arnold 2007] and Cynoglossus semilaevis

[Shao et al. 2014]). To investigate potential regional variation

in S. mansoni, we investigated local patterns of gene expres-

sion by using sliding windows of 50 genes along the Z chro-

mosome (fig. 2). The Z-specific part, which was previously

described as discontinuous in the version 5.2 of the genome

(Protasio et al. 2012), was considered here as three Z-specific

regions named Z1, Z2, and Z3. They were respectively defined

by their coordinates, as follow: Z1 from 3,550 to 13,340 kb;

Z2 from 13,860 to 19,650 kb; and Z3 from 23,230 to 30,820

kb (Protasio et al. 2012).

As expected, the sliding window analysis revealed a

female-to-male ratio oscillating around 1 in the PAR for all

stages (log 2[F:M] close to 0; fig. 2, right panel). In the three Z-

specific regions, the female-to-male expression ratio oscillated

around 0.7 in schistosomula and 0.6 immature worms, con-

sistent with homogeneous but partial compensation (fig. 2D

and F; supplementary figs. 1 and 2, Supplementary Material

online). However, in cercariae, the female-to-male expression

ratio was closer to 1. When looking at each Z-specific region

individually, the female-to-male expression ratio was signifi-

cantly lower in the Z1 and Z3 regions compared with the PAR

in all three developmental stages (fig. 2 left panel; values and

significance in Supplementary Table 2, Supplementary

Material online). On the other hand, the Z2 region displayed

a higher female-to-male ratio in cercariae, and this was not

significantly different from the PAR (Z2[F:M]/PAR[F:M] ¼
0.88; fig. 2A). In schistosomula and immature worms, the

same Z2 was significantly more male biased in expression

than the PAR (Z2[F:M]/PAR[F:M] ¼ 0.71 and 0.62, respec-

tively; fig. 2C and E).

Consistent with this, male and female expression levels

overlapped in the Z2 region of cercariae; whereas in the Z1,

female expression was lower than male expression, consistent

with less complete compensation (fig. 2B). In the Z3 region,

and still in cercariae, we found a narrow window of over-

lapping male and female expression at the beginning of the

region, whereas the remaining part displayed lower

FIG. 2.—Gene expression pattern according to the location along the Z chromosome, and the developmental stages. The female-to-male expression

ratio (F:M) is represented for the three Z-specific regions defined in the version 5.2 of the genome (Z1 in light beige, Z2 in orange, and Z3 in light beige) and

the PAR (in dark beige) for cercariae (A), schistosomula (C), and immature worms (E). For each stage, gene expression pattern for female (in pink) and male (in

blue) is shown along the Z by sliding window of 50 genes (B, D, F). The thick black line represents the female-to-male expression ratio by sliding window of 50

genes. Only genes with expression RPKM>1 and a sex-bias fold change <2 are shown. Asterisks show the level of significance of Z-to-PAR comparisons

(Wilcoxon rank sum test with continuity correction): ***P value<0.0001, N.S.¼ nonsignificant differences. Z1-to-PAR ratio values are 0.76, 0.72, and 0.64;

Z2-to-PAR ratio values are 0.88, 0.71, and 0.62; Z3-to-PAR ratio values are 0.81, 0.74, and 0.62, for cercariae, schistosomula, and immature worms,

respectively. Other ratios are shown in Supplementary Table 2, Supplementary Material online.
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expression in females. This could be meaningful because Z3

shows an intermediate Z(F:M)/PAR(F:M) ratio (0.76*** <

0.81* < 0.88N.S. for Z1 < Z3 < Z2), which could be driven

by these smaller-scale regional differences (fig. 2B). In the

intravertebrate stages, the three Z-specific regions differed

clearly from the pseudoautosomal ones by presenting consis-

tently reduced expression in females (fig. 3D and F). The fe-

male and male gene expression ratios for each Z-specific

region are shown in Supplementary Table 2, Supplementary

Material online, and the patterns of expression within each

sex are illustrated in Supplementary Figure 3, Supplementary

Material online. Considering gene-by-gene comparison be-

tween stages, intravertebrate stages displayed more similar

expression patterns than cercariae (Supplementary Fig. 4,

Supplementary Material online).

In summary, this transcriptomic analysis along the Z chro-

mosome highlighted 1) local variation of the dosage compen-

sation across Z-specific regions in cercariae and 2) partial and

consistent dosage compensation all along the three Z-specific

regions in schistosomula and immature worms.

Z-Specific Chromatin Landscape in Cercariae and
Immature Worms to Elucidate Shared or Sex-Specific
Mechanisms

Previous studies on dosage compensation in model organisms

indicate that chromatin structure plays a key role in the reg-

ulation of this evolutionary mechanism (Lucchesi et al. 2005;

Lucchesi 2018). As the main transcriptomic differences were

observed between the free stage cercariae and the intraverte-

brate stages, we focused our epigenetic study on cercariae

and immature worms. We analyzed immunoprecipitation

assays with antibodies targeting three histone marks: 1)

H3K4me3, associated with active promoter and transcription

start site, and depleted in the heterochromatic inactivated X

chromosome of mammals (O’Neill et al. 2008; Marks et al.

2009); 2) H3K27me3, a repressive mark associated with poly-

comb, poised transcription, and enriched in the inactivated X

chromosome of mammals (Lucchesi et al. 2005); and 3)

H4K20me1, associated with nonpermissive chromatin in

Caenorhabditis dosage compensation (Vielle et al. 2012;

Kramer 2015, 2016). We compared the enrichment of these

histone marks in a sex-specific manner, on Z-specific genes,

pseudoautosomes, and autosomes (using chromosome 1 as a

proxy for the autosomal chromatin landscape, as its transcrip-

tomic pattern appeared to be representative of autosomes,

see Supplementary Figure 5, Supplementary Material online).

For each of these genomic locations, the average enrichment

profile of all annotated genes was performed around the TSS:

from 1,000 base pairs (bp) upstream to 5,000-bp

downstream.

We observed that the average profile of the three studied

marks was specific for each genomic location in both cercar-

iae and immature worms (Figure 3 and supplementary figs. 6–

8, Supplementary Material online). Z-specific genes were

enriched for H3K4me3 in both stages and sexes, especially

between the TSS and positionþ2,000 bp (fig. 3, upper panel).

H3K27me3 was depleted from Z-specific genes upstream of

FIG. 3.—Average H3K4me3 and H3K27me3 enrichment profile according to sex, developmental stage, and genomic location. x axis represents the

position in base pairs (bp) relative to the TSS of the genes (position 0). y axis represents the normalized average enrichment of reads obtained after a

Chromatin Immunoprecipitation targeting the “permissive” mark H3K4me3 (in green) and the “nonpermissive” H3K27me3 (in red), in female cercariae (A)

and immature worms (B), or male cercariae (C) and immature worms (D). The EpiChIP enrichment has been calculated around the TSS for chromosome 1 as

proxy for autosomes (Chr1, dark shade), for the PAR of sex chromosomes (PAR, medium shade), and for chromosome Z-specific region of sex chromosomes

(Z, light shade). For each of these genomic locations, we show the average result of the profiles obtained for each coding sequence. Each profile has been

normalized with the same average enrichment of reads obtained after a Chromatin Immunoprecipitation without antibody. The experiment was performed

in duplicates in males and triplicate in females. EpiChIP profiles showing standard error at each position are shown in Supplementary Figures 6 and 7,

Supplementary Material online. The percentage of maximum difference between genomic regions is shown in Supplementary Tables 3 and 4,

Supplementary Material online: all differences are statistically significant (P value < 0.001, Kolmogorov–Smirnov two sample tests).
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the TSS and along the transcription unit in both stages and

sexes (fig. 3, lower panel). Finally, H4K20me1, for which only

female data was available, displayed a stronger enrichment

on chromosome 1 and on the PAR than on Z-specific genes in

female cercariae (percentage of maximum difference: 63.3%,

supplementary fig. 8 and supplementary table 5,

Supplementary Material online). However, this difference di-

minished between stages, with an increased enrichment on

the Z-specific region in immature females bringing it closer to

the autosomal level (percentage of maximum difference:

30%, supplementary fig. 8 and supplementary table 5,

Supplementary Material online). Differences between chro-

mosomal regions within a developmental stage and sex

were tested for the three analyzed histone marks: the most

significant difference was consistently observed either be-

tween Z-specific genes and chromosome 1 or between Z-

specific and pseudoautosomal genes (Kolmogorov–Smirnov

two sample tests, supplementary tables 3–5, Supplementary

Material online). This supports the idea that the chromatin

landscape is more similar between the autosomes and the

PAR of S. mansoni, whereas Z-specific genes display a singular

epigenetic landscape. The depletion of the two “repressive”

marks (H3K27me3 and H4K20me1) and the enrichment of

the “permissive” H3K4me3 mark suggest a chromatin struc-

ture prone to enhanced gene expression specifically in this Z-

specific region.

In summary, our epigenetic analysis highlighted the spe-

cialized chromatin landscape of the Z-specific region, which

appeared to be more permissive than that of the autosomal

regions in both sexes and stages. This modified chromatin

state of the Z-specific region likely promotes enhanced ex-

pression compared with the autosomes, independent of the

stage and sex, consistent with the first part of our study. The

analysis of H4K20me1 in females further showed a differen-

tial enrichment of this histone mark on Z-specific genes be-

tween cercariae and adults, which may be related to the

differences that we observe in the extent of female dosage

compensation between the two stages.

Discussion

We provide here the first combined transcriptomic and

epigenetic analysis of Z chromosome dosage compensa-

tion through three developmental stages of S. mansoni

parasite. This work highlights three important aspects of

gene expression regulation on sex chromosomes: 1) A

strong upregulation of female expression of Z-linked

genes in the free larval stage cercariae, consistent with

complete dosage compensation, but not in intraverte-

brate stages schistosomula and immature females that

display partial dosage compensation only. 2) Local varia-

tions of the female-to-male expression ratio along the Z

chromosome. 3) Differences in chromatin structures be-

tween Z-specific regions and autosomes which may

support the enhanced expression of both male and female

Z chromosomes.

Change in Dosage Compensation Status following Host
Penetration

Our RNA-Seq analysis detects a global hypertranscription of Z-

specific genes in both sexes of S. mansoni, consistent with the

intermediate stage of compensation previously reported in

schistosomula and adult worms (Vicoso and Bachtrog 2011;

Picard et al. 2018). In both studies, the female upregulation of

expression only partially resolved the imbalance between the

Z chromosome and the autosomes. However, we show here

that this partial compensation does not apply to earlier devel-

opmental stages of S. mansoni: in females, enhanced tran-

scriptional levels of the Z-specific genes results in a Z-to-A ratio

of around 1 in cercariae (compared with �0.8 in the intra-

vertebrate stages).

The dosage compensation status has been shown to be

tissue- and development-specific within a same species

(Mank and Ellegren 2009; Lott et al. 2011; Deng et al.

2014; Huylmans et al. 2017). In particular, germ/stem cells

might need to overcome a special challenge regarding dos-

age compensation, as 1) genome wide reprograming is

expected to occur and erase epigenetic marks responsible

for maintaining the chromatin state necessary for compen-

sation (Sangrithi and Turner 2018) and/or 2) dosage com-

pensation mechanisms may act as developmental

regulators by targeting autosomal genes involved in pat-

terning and morphogenesis (Valsecchi et al. 2018). In schis-

tosomes, larval stages display particular features regarding

their content in such cells: in the intermediate host, spor-

ocysts consist of totipotent stem cells undergoing intense

clonal multiplication (Cort et al. 1954); in cercariae, embry-

onic stem cell specific combination of histone marks have

been described (Wang et al. 2013; Roquis et al. 2015). This

chromatin signature disappears after host penetration, sig-

nifying important changes in gene expression regulation

(Roquis et al. 2015). Therefore, a specific cell type content

could explain the shift in the dosage compensation status

observed between the larval stage and the intravertebrate

phase. Further studies are needed to disentangle the role of

those cells in the observed pattern, and the examination of

dosage compensation status during earlier larval stages

certainly deserves further attention. Technological advan-

ces such a single cell/single individual RNA sequencing

should in the future allow for such analyses.

Local Variation of Male-Bias in Cercariae: Different
Evolutionary Stages of the Dosage Compensation
Mechanisms?

Overexpression of Z-specific genes compared with the level of

autosomal gene expression has been recently described in S.

mansoni intravertebrate stages (Picard et al. 2018). Here, we
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further show that this overexpression also occurs in the undif-

ferentiated and free-living stage cercariae and is therefore a

consistent feature maintained throughout the parasite life cy-

cle. This uncommon feature has been described in adult floor

beetles (whole body sample) which is a XY male heteroga-

metic system (Prince et al. 2010). In this species, the male

hemizygous X chromosome is fully compensated, and

females display XX/AA ratio superior to 1. It has been also

recently reported in the young XY plant system Silene latifolia

(Muyle et al. 2018). Such pattern was theorized by Gu and

Walters as the “type IV” of sex chromosome dosage com-

pensation, with complete equalization of the X/Z-to-

autosome ratio in the heterogametic sex, but no dosage bal-

ance between sexes as the homogametic sex exhibit Z/X

hypertranscription relative to autosomes (Gu and Walters

2017). These observations can be interpreted as an example

of the first step of the Ohno’s hypothesis, suggesting that the

establishment of dosage compensation process evolved in a

two-step process (Ohno 1967; Charlesworth 1996; Vicoso

and Bachtrog 2009; Bachtrog et al. 2011; Mank 2013): 1)

First, Z- or X-linked genes became upregulated in both sexes.

This would restore expression of the single X or Z chromo-

some in the heterogametic sex to the diploid level that existed

before degradation of the Y or W, but would result in too

much gene expression in the homogametic sex. 2) Therefore,

secondarily, a downregulation of Z or X-linked gene expres-

sion would evolve in the homogametic sex to restore the

correct Z- or X-to-autosome ratio. But many studies recently

challenge this theory. For instance, there is no convincing ev-

idence that the X chromosome is globally upregulated in both

mammals (Julien et al. 2012), and C. elegans (Albritton et al.

2014). In C. elegans, the X chromosomes in the XX homoga-

metic individuals are downregulated, leading to dosage bal-

ance between the sexes but not dosage compensation in X0

males. In placental mammals, no global X upregulation was

observed, unlike in marsupials (Julien et al. 2012; Whitworth

and Pask 2016). Thus, even though complete X chromosome

inactivation has traditionally been interpreted as the second

step of the process (Brockdorff and Turner 2015), the rele-

vance of the Ohno’s hypothesis to the evolution of placental

mammal dosage compensation is in fact controversial (e.g.,

Nguyen and Disteche 2006; Vicoso and Bachtrog 2009; Lin

et al. 2012; Mank 2013; Pessia et al. 2014; Gu and Walters

2017).

Our results suggest that S. mansoni may have followed an

“Ohno-like” evolutionary trajectory for dosage compensa-

tion, which allowed the Z-specific region to enhance its ex-

pression to reach that of autosomal genes in females, but

under which males somehow avoid the necessity of complete

countercompensation of this Z chromosome hypertranscrip-

tion. This raises the question of what the current status for the

evolution of dosage compensation is in S. mansoni: an inter-

mediate or a stable state?

Regional variation of the Z dosage compensation has been

described in birds, where some dosage-compensated genes

are concentrated in a region of the short arm of the Z chro-

mosome, near the male hypermethylated (MHM) locus

(Melamed and Arnold 2007; Wright et al. 2015). Full dosage

compensation has also been described in a restricted chromo-

somal region in pseudomale testes of Cy. semilaevis, whereas

the rest of the Z chromosome is partially compensated (Shao

et al. 2014). It has been proposed that such local variations in

gene regulation along the sex chromosome could be based

on regional age following sex-linkage, including in XY species

such as stickleback (Schultheiß et al. 2015). In S. mansoni, two

evolutionary strata of different ages were recently described

(supplementary fig. 9, Supplementary Material online) (Picard

et al. 2018). If partial upregulation of Z-specific genes in both

sexes represents an intermediate step in the evolution of dos-

age compensation, we may expect that the older stratum will

be closer to balanced dosage between males and females

than the younger one. In the previous study and in ours, no

difference in gene expression could be detected between

these strata in intravertebrate stages. In cercariae, however,

the section of the Z that is closest to complete compensation

(region Z2) is indeed part of the older Z-specific evolutionary

stratum that is shared between African and Asian schisto-

somes (supplementary fig. 9, Supplementary Material online,

Picard et al. 2018). It is therefore likely that dosage compen-

sation is still evolving in S. mansoni, and that the Z-specific

region which displays equalized gene expression between the

sexes actually represents the final stage of dosage compen-

sation evolution in this species.

The Specific Chromatin Features of the Z-Specific Regions
May Account for the Hypertranscription of Z-Specific
Genes in Both Sexes

Various mechanisms have evolved to regulate the gene dos-

age at the functional level. In fully compensated organisms,

these mechanisms are all based on the modulation of chro-

matin accessibility of the sex-specific regions (Lucchesi et al.

2005; Ercan 2015; Lucchesi 2018). In mammals, transcrip-

tional regulation is achieved by the progressive depletion of

histone active marks concomitant to the enrichment of his-

tone repressive mark H3K27me3 through the action of the X-

inactive specific transcript (Xist) (Brockdorff and Turner 2015).

In C. elegans (XX/XO system), the hermaphrodite two X chro-

mosomes display halved transcription level to match X expres-

sion to that of males (XO). Reduced transcription is allowed by

a complex of proteins called the dosage compensation com-

plex resulting in a depletion of histone active marks and en-

richment of histone repressive marks (Lau and Csankovszki

2015). In Drosophila melanogaster (XX/XY system), the tran-

scription of the single male X chromosome is doubled by an

overall increase of the chromatin accessibility by the Male-

Specific Lethal complex (Lucchesi et al. 2005). More recent
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work performed on the pea aphid has also shown an en-

hanced chromatin accessibility of the X chromosome of males

which may account for dose correction of those X-linked

genes in this species (Richard et al. 2017).

We present here an overview of the chromatin structure by

ChIP-Seq analysis targeting three modified histones in differ-

ent developmental stages of S. mansoni and highlight differ-

ent chromatin patterns between autosomal and Z-linked

genes. We found that H3K27me3 and H4K20me1 were de-

pleted in the Z-specific region relative to the PAR of Z chro-

mosome and to autosomal regions. Reversely, we found that

H3K4me3 was enriched in the Z-specific region of the Z chro-

mosome relative to the PAR and to autosomal regions. The

role of H4K20me1 in gene regulation has remained a mystery

because of its contribution to both gene activation and gene

repression in different contexts (Beck et al. 2012). However, in

the context of chromosome-wide regulatory mechanism for

dosage compensation, this mark has been shown to be

enriched in the inactive chromosome of female mammals

(Kelsey et al. 2015) and enriched in both hermaphrodite X

chromosomes in Caenorhabditis, resulting in reduction of

transcription level (Bian et al. 2017; Kramer 2015, 2016).

Here, changes in H4K20me1 between female cercariae and

adults are specifically observed for the Z-specific region, argu-

ing in favor of a role of this mark in dosage compensation

status switch between the stages. H3K27me3 is a clear re-

pressive mark enriched in heterochromatic X-inactivated chro-

mosome of mammals (Kelsey et al. 2015) and H3K4me3 was

reported to be depleted during X-inactivation in female em-

bryonic stem cells (O’Neill et al. 2008). Given the depletion for

both repressive marks concomitant to enrichment of the ac-

tive H3K4me3 mark in the Z-specific region, we suggest that a

global regulation of the chromatin accessibility of the Z-linked

regions occurs in order to overexpress the Z-linked genes and

compensate for gene dose defect in the single Z-specific re-

gion of females. This could be further addressed using chro-

matin accessibility assay which could evidence an open

chromatin state such as those performed in the pea aphids

which support their enhanced X overexpression (Richard et al.

2017).

Local variation in dosage compensation is also supported

by chromatin based event such as those described in C. semi-

laevis where an increase in cytosine methylation density

occurs in the compensated region (Shao et al. 2014). In

Gallus gallus, the implication of the MHM noncoding RNA

and subsequent enrichment of H4K16ac around the MHM

locus in females allow a full compensation of this region

(Melamed and Arnold 2007). Female-specific non-coding

RNAs have been shown to be expressed in schistosome larval

stages (Lepesant et al. 2012) and their implication in changes

in chromatin states, regulation of gene expression and, more

specifically, in dosage compensation mechanisms, certainly

deserve further attention.

Conclusion

Until recently, dosage compensation in ZW female-

heterogametic species was thought to be partial and to occur

at a gene-specific level. Recent studies in non-model organ-

isms have challenged this canonical view. In line with them,

our study brings a new insight by showing developmental

changes in dosage compensation status in female schisto-

somes. From global compensation in undifferentiated free

larvae, to partial compensation after host penetration and

the onset of sexual differentiation. Despite this developmental

variation, our study highlights a robust overexpression of the Z

chromosome throughout S. mansoni life cycle, independently

of the sex. We show how this might be mediated by an en-

hanced chromatin accessibility of the Z-specific regions, giving

a first insight into S. mansoni chromatin pattern in relation to

dosage compensation. Our epigenetic study paves the way

toward the construction of an evolutionary chromatin land-

scape of the parasite’s dosage compensation. Investigating

more combined histone modifications and non-coding

RNAs appears to be the next step to understand both devel-

opmental changes and finer variations in gene expression

along the Z chromosome.
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