136 research outputs found

    The protective role of transferrin in Müller glial cells after iron-induced toxicity

    Get PDF
    PURPOSE: Transferrin (Tf) expression is enhanced by aging and inflammation in humans. We investigated the role of transferrin in glial protection. METHODS: We generated transgenic mice (Tg) carrying the complete human transferrin gene on a C57Bl/6J genetic background. We studied human (hTf) and mouse (mTf) transferrin localization in Tg and wild-type (WT) C57Bl/6J mice using immunochemistry with specific antibodies. Müller glial (MG) cells were cultured from explants and characterized using cellular retinaldehyde binding protein (CRALBP) and vimentin antibodies. They were further subcultured for study. We incubated cells with FeCl(3)-nitrilotriacetate to test for the iron-induced stress response; viability was determined by direct counting and measurement of lactate dehydrogenase (LDH) activity. Tf expression was determined by reverse transcriptase-quantitative PCR with human- or mouse-specific probes. hTf and mTf in the medium were assayed by ELISA or radioimmunoassay (RIA), respectively. RESULTS: mTf was mainly localized in retinal pigment epithelium and ganglion cell layers in retina sections of both mouse lines. hTf was abundant in MG cells. The distribution of mTf and hTf mRNA was consistent with these findings. mTf and hTf were secreted into the medium of MG cell primary cultures. Cells from Tg mice secreted hTf at a particularly high level. However, both WT and Tg cell cultures lose their ability to secrete Tf after a few passages. Tg MG cells secreting hTf were more resistant to iron-induced stress toxicity than those no longer secreted hTf. Similarly, exogenous human apo-Tf, but not human holo-Tf, conferred resistance to iron-induced stress on MG cells from WT mice. CONCLUSIONS: hTf localization in MG cells from Tg mice was reminiscent of that reported for aged human retina and age-related macular degeneration, both conditions associated with iron deposition. The role of hTf in protection against toxicity in Tg MG cells probably involves an adaptive mechanism developed in neural retina to control iron-induced stress

    Overexpressed or intraperitoneally injected human transferrin prevents photoreceptor degeneration in rd10 mice

    Get PDF
    PURPOSE: Retinal degeneration has been associated with iron accumulation in age-related macular degeneration (AMD), and in several rodent models that had one or several iron regulating protein impairments. We investigated the iron concentration and the protective role of human transferrin (hTf) in rd10 mice, a model of retinal degeneration. METHODS: The proton-induced X-ray emission (PIXE) method was used to quantify iron in rd10 mice 2, 3, and 4 weeks after birth. We generated mice with the β-phosphodiesterase mutation and hTf expression by crossbreeding rd10 mice with TghTf mice (rd10/hTf mice). The photoreceptor loss and apoptosis were evaluated by terminal deoxynucleotidyl transferase dUTP nick end labeling in 3-week-old rd10/hTf mice and compared with 3-week-old rd10 mice. The neuroprotective effect of hTf was analyzed in 5-day-old rd10 mice treated by intraperitoneal administration with hTf for up to 25 days. The retinal hTf concentrations and the thickness of the outer nuclear layer were quantified in all treated mice at 25 days postnatally. RESULTS: PIXE analysis demonstrated an age-dependent iron accumulation in the photoreceptors of rd10 mice. The rd10/hTf mice had the rd10 mutation, expressed high levels of hTf, and showed a significant decrease in photoreceptor death. In addition, rd10 mice intraperitoneally treated with hTf resulted in the retinal presence of hTf and a dose-dependent reduction in photoreceptor degeneration. CONCLUSIONS: Our results suggest that iron accumulation in the retinas of rd10 mutant mice is associated with photoreceptor degeneration. For the first time, the enhanced survival of cones and rods in the retina of this model has been demonstrated through overexpression or systemic administration of hTf. This study highlights the therapeutic potential of Tf to inhibit iron-induced photoreceptor cell death observed in degenerative diseases such as retinitis pigmentosa and age-related macular degeneration

    CD36 plays an important role in the clearance of oxLDL and associated age-dependent sub-retinal deposits

    Get PDF
    Age-related macular degeneration (AMD) represents the major cause of vision loss in industrialized nations. Laminar deposits in Bruch's membrane (BM) are among the first prominent histopathologic features, along with drusen formation, and have been found to contain oxidized lipids. Increases in concentrations of oxidized LDL (oxLDL) in plasma are observed with age and high fat high (HFHC) cholesterol diet. CD36 is the principal receptor implicated in uptake of oxLDL, and is expressed in the retinal pigment epithelium (RPE). We determined if CD36 participates in oxLDL uptake in RPE and correspondingly in clearance of sub-retinal deposits. Uptake of oxLDL by RPE in vitro and in vivo was CD36-dependent. CD36 deficiency in mice resulted in age-associated accumulation of oxLDL and sub-retinal BM thickening, despite fed a regular diet. Conversely, treatment of HFHC-fed ApoE null mice with a CD36 agonist, EP80317 (300 μg/kg/day), markedly diminished thickening of BM, and partially preserved (in part) photoreceptor function. In conclusion, our data uncover a new role for CD36 in the clearance of oxidized lipids from BM and in the prevention of age-dependent sub-retinal laminar deposits

    NK- and T-cell granzyme B and K expression correlates with age, CMV infection and influenza vaccine-induced antibody titres in older adults

    Get PDF
    Granzymes are a family of serine-proteases that act as critical mediators in the cytolytic and immunomodulatory activities of immune cells such as CD8+ T-cells and natural killer (NK) cells. Previous work indicates that both granzyme B (GZB) and K (GZK) are increased with age in CD8+ T-cells, and in the case of GZB, contribute to dysfunctional immune processes observed in older adults. Here, we sought to determine how GZB and GZK expression in NK-cells, and CD4+, CD8+, and gamma-delta T-cells, quantified in terms of positive cell frequency and mean fluorescence intensity (MFI), differed with age, age-related health-traits and the antibody response to high-dose influenza vaccine. We found that the frequency and MFI of GZB-expressing NK-cells, and CD8+ and Vδ1+ T-cells, and GZK-expressing CD8+ T-cells was significantly higher in older (66–97 years old; n = 75) vs. younger (24–37 years old; n = 10) adults by up to 5-fold. There were no significant associations of GZB/GZK expression with sex, frailty or plasma levels of TNF or IL-6 in older adults, but those who were seropositive for cytomegalovirus (CMV) exhibited significantly higher frequencies of GZB+ NK-cells, and CD4+, CD8+ and Vδ1+ T-cells, and GZK+ CD8+ T-cells (Cohen’s d = .5–1.5). Pre-vaccination frequencies of GZB+ NK-cells were positively correlated with vaccine antibody responses against A/H3N2 (d = .17), while the frequencies of GZK+ NK and CD8+ T-cells were inversely associated with A/H1N1 (d = −0.18 to −0.20). Interestingly, GZK+ NK-cell frequency was inversely correlated with pre-vaccination A/H1N1 antibody titres, as well as those measured over the previous 4 years, further supporting a role for this subset in influencing vaccine antibody-responses. These findings further our understanding of how granzyme expression in different lymphoid cell-types may change with age, while suggesting that they influence vaccine responsiveness in older adults

    Quel modèle de bibliothèque ?

    Get PDF
    Le modèle s’essouffle-t-il ? Quel modèle ? Faut-il un modèle ? De quoi parle-t-on ? Voilà quelques-unes des questions que cet ouvrage aborde. Le « modèle de bibliothèque publique à la française » est à la fois une évidence et un trou noir. Une évidence indiscutée qui a structuré, accompagné, encouragé le développement récent des bibliothèques publiques. Un trou noir précisément parce qu’il est une évidence indiscutée, en voie de fossilisation, voire de nécrose. Cet ouvrage collectif rassemble 9 contributions (et une postface) qui interrogent à la fois le concept même de modèle de bibliothèque publique, ses composantes, ses contradictions, la place qu’il réserve aux usagers, aux collections ou aux services. Il fait la part belle aux inspirations étrangères de ce modèle ou aux comparaisons avec d’autres héritages. Loin de répondre, il questionne. Et c’est très bien ainsi

    X-linked susceptibility to mycobacteria is caused by mutations in NEMO impairing CD40-dependent IL-12 production

    Get PDF
    Germline mutations in five autosomal genes involved in interleukin (IL)-12–dependent, interferon (IFN)-γ–mediated immunity cause Mendelian susceptibility to mycobacterial diseases (MSMD). The molecular basis of X-linked recessive (XR)–MSMD remains unknown. We report here mutations in the leucine zipper (LZ) domain of the NF-κB essential modulator (NEMO) gene in three unrelated kindreds with XR-MSMD. The mutant proteins were produced in normal amounts in blood and fibroblastic cells. However, the patients' monocytes presented an intrinsic defect in T cell–dependent IL-12 production, resulting in defective IFN-γ secretion by T cells. IL-12 production was also impaired as the result of a specific defect in NEMO- and NF-κB/c-Rel–mediated CD40 signaling after the stimulation of monocytes and dendritic cells by CD40L-expressing T cells and fibroblasts, respectively. However, the CD40-dependent up-regulation of costimulatory molecules of dendritic cells and the proliferation and immunoglobulin class switch of B cells were normal. Moreover, the patients' blood and fibroblastic cells responded to other NF-κB activators, such as tumor necrosis factor-α, IL-1β, and lipopolysaccharide. These two mutations in the NEMO LZ domain provide the first genetic etiology of XR-MSMD. They also demonstrate the importance of the T cell– and CD40L-triggered, CD40-, and NEMO/NF-κB/c-Rel–mediated induction of IL-12 by monocyte-derived cells for protective immunity to mycobacteria in humans

    Characterization of greater middle eastern genetic variation for enhanced disease gene discovery

    Get PDF
    The Greater Middle East (GME) has been a central hub of human migration and population admixture. The tradition of consanguinity, variably practiced in the Persian Gulf region, North Africa, and Central Asia1-3, has resulted in an elevated burden of recessive disease4. Here we generated a whole-exome GME variome from 1,111 unrelated subjects. We detected substantial diversity and admixture in continental and subregional populations, corresponding to several ancient founder populations with little evidence of bottlenecks. Measured consanguinity rates were an order of magnitude above those in other sampled populations, and the GME population exhibited an increased burden of runs of homozygosity (ROHs) but showed no evidence for reduced burden of deleterious variation due to classically theorized ‘genetic purging’. Applying this database to unsolved recessive conditions in the GME population reduced the number of potential disease-causing variants by four- to sevenfold. These results show variegated genetic architecture in GME populations and support future human genetic discoveries in Mendelian and population genetics
    corecore