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Abstract

Background: Change point problems arise in many genomic analyses such as the detection of copy number
variations or the detection of transcribed regions. The expanding Next Generation Sequencing technologies now
allow to locate change points at the nucleotide resolution.

Results: Because of its complexity which is almost linear in the sequence length when the maximal number of
segments is constant, and as its performance had been acknowledged for microarrays, we propose to use the Pruned
Dynamic Programming algorithm for Seq-experiment outputs. This requires the adaptation of the algorithm to the
negative binomial distribution with which we model the data. We show that if the dispersion in the signal is known,
the PDP algorithm can be used, and we provide an estimator for this dispersion. We describe a compression
framework which reduces the time complexity without modifying the accuracy of the segmentation. We propose to
estimate the number of segments via a penalized likelihood criterion. We illustrate the performance of the proposed
methodology on RNA-Seq data.

Conclusions: We illustrate the results of our approach on a real dataset and show its good performance. Our
algorithm is available as an R package on the CRAN repository.

Keywords: Segmentation algorithm, Exact algorithm, Fast algorithm, RNA-Seq data, Genome annotation, Count
data, Data compression

Background
Change-point detection methods have long been used in
the analysis of genetic data as an efficient tool in the study
of DNA sequences for various purposes. For instance, seg-
mentation methods have been developed for categorical
variables with the aim of identifying patterns for gene
predictions [1,2], while SNPs have been detected using
sequence segmentation [3]. In the last two decades, with
the large spread of micro-arrays, change-point methods
have been widely used for the analysis of DNA copy num-
ber variations and the identification of amplification or
deletion of genomic regions in pathologies such as cancer
[4-8].
The recent development of Next-Generation Sequenc-

ing technologies gives rise to new applications along with
new difficulties: (a) the increased size of profiles (up to 108
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data-points when micro-array signals were closer to 105),
and (b) the discrete nature of the output (number of reads
starting at each position of the genome). Yet applying seg-
mentation methods to DNA-Seq data with their greater
resolution should lead to the analysis of copy-number
variation with a much improved precision compared to
CGH arrays. Moreover, in the case of poly-(A) RNA-
Seq data on lower organisms, since coding regions of the
genome are well separated from non-coding regions with
lower activity, segmentation methods should allow the
identification of transcribed genes as well as address the
issue of new transcript discovery. Our objective is there-
fore to develop a segmentation method to tackle both
(a) and (b) with some specific requirements: the amount
of reads falling within a segment should be represen-
tative of the biological information associated (relative
copy-number of the region, relative level of expression of
the gene), and comparison to neighboring regions should
be sufficient to label the segment (for instance normal
or deleted region of the chromosome in DNA-Seq data,
exon or non-transcribed region in RNA-Seq), therefore
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no comparison profile should be needed. This also sup-
presses the need for normalization, and consequently we
wish to analyze the raw count-profile.
Up to now, most methods addressing the analysis of

these datasets require some normalization process to
allow the use of algorithms which rely on Gaussian-
distributed data or which were previously developed for
micro-arrays [9-12]. Indeed, methods adapted to count
datasets are not numerous and are highly focused on the
Poisson distribution. Alteration of genomic sequences can
be detected based on the comparison of Poisson processes
associated with the read counts of a case and a control
sample [13], but this cannot be applied to the detection of
transcribed regions in a single condition.
Still, a likelihood ratio statistic was proposed for the

localization of a shift in the intensity of a Poisson process
[14], and a test statistic was proposed for the existence of a
change-point in the Poisson autoregression of order 1 [15].
These last two methods do not require a comparison

profile but they only allow for the detection of a single
change-point and have too high a time-complexity to be
applied to RNA-Seq profiles. Binary Segmentation, a fast
heuristic [6], and Pruned Exact Linear Time (PELT) [16],
an exact algorithm for optimal segmentation with respect
to the likelihood, are both implemented for the Poisson
distribution in the changepoint package. Even though
both are extremely fast, do not require a comparison pro-
file, and analyze count-data, the Poisson distribution is not
adapted to our kind of datasets.
A recent study [17] has compared 13 segmentation

methods for the analysis of chromosomal copy number
profiles and has shown the excellent performance of the
Pruned Dynamic Programming (PDP) algorithm [18] pro-
posed in its initial implementation for the analysis of
Gaussian data in the R package cghseg. We propose to
use this algorithm, which we have implemented for the
Poisson and negative binomial distributions.
In the next section we recall the general segmentation

framework and the definition and requirements of the
PDP algorithm. Our contributions are given in the third
section where we define the negative binomial model and
show that it satisfies the PDP algorithm requirements.
We also provide a theoretical result for the possibility to
compress the data, and finally we give a model selection
criterion with theoretical guarantees, which makes the
whole approach complete. We conclude with a simulation
study, which illustrates the performance of the proposed
method.

Segmentationmodel and algorithm
General segmentationmodel
The general segmentation problem consists in partition-
ing a signal of n data-points {yt}t∈[[1,n]] into a given number
K of pieces or segments. The model can be written as

follows: the observed data {yt}t=1,...,n are supposed to be
a realization of an independent random process Y =
{Yt}t=1,...,n. This process is drawn from a probability dis-
tribution G which depends on a set of parameters among
which one parameter θ is assumed to be affected by K − 1
abrupt changes, called change-points, such that

Yt ∼ G(θr , φ) if t ∈ r and r ∈ m

wherem is a partition of [[ 1, n]] into segments r, θr stands
for the parameter of segment r and φ is constant. The
objective is to estimate the change-points or the posi-
tions of the segments and the parameters θr both resulting
from the segmentation. More precisely, we define Mk,t
the set of all possible partitions in k > 0 regions of the
sequence up to point t. We recall that the number of
possible partitions is

card(Mk,t) =
(
t − 1
k − 1

)
.

We aim at choosing the partition in MK ,n of minimal
loss γ , where the loss is usually taken as the nega-
tive log-likelihood of the model. We define the point-
additive loss of a segment with given parameter θ as
c(r, θ) = ∑

i ∈ r γ (yi, θ), therefore its optimal cost is c(r) =
minθ {c(r, θ)}. This allows us to define the cost of a seg-
mentation m as

∑
r ∈ m c(r) and our goal is to recover the

optimal segmentation MK ,n and its cost CK ,n which are
particular cases of the generic optimal segmentation of the
signal up to point t in k segments and its cost, defined as:

Mk,t = argmin{m ∈ Mk,t}

{ ∑
r ∈ m

c(r)

}

and Ck,t = min{m ∈ Mk,t}

{ ∑
r ∈ m

c(r)

}
.

Quick overview of the PDP algorithm
Like the original DP algorithm, the pruned DP algorithm
is an iterative algorithm based on the minimization of a
cost function Ck,t which is traditionally decomposed as:

Ck,t = min
{k−1<τ<t}

{
Ck−1,τ + min

θ
[c([τ + 1, t], θ)]

}
(1)

where θ is the parameter of the cost of the last segment,
constraints on its possible values being directly related to
the support of the loss function γ (for instance θ takes its
value in R in the case of the Gaussian loss, but in [0, 1]
in the case of the binomial loss). In what follows we will
denote by Is the set of possible values for parameter θ .
The specificity of the PDP algorithm is that it relies on

the comparison of candidates for the last change-point
position τ through the permutation of the minimizations
in (1) and the introduction of the functions:

Hk,t(θ) = min
k−1<τ≤t

{
Ck−1,τ + c([τ + 1, t], θ)

}
,
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which are the cost of the best partition in k regions up to
t, the parameter of the last segment being θ . Ck,t is then
obtained as minθ {Hk,t(θ)}.
Then at each iteration k, the PDP algorithm works on

a list of last change-point candidates: ListCandidatek . For
each of these τ s and for each value of t, it updates the set
of θs, denoted Sτ

k,t for which this candidate is optimal. If
this set is empty, the candidate is discarded, resulting in
the pruning and lower complexity of the algorithm.
The foundations of the algorithm can be written as

follows.

• Defining Hτ
k,t(θ) = Ck−1,τ + ∑t

j=τ+1 γ (yj, θ) the
optimal cost if the last change is τ and last parameter
is θ , then

(i ) Hτ
k,t+1(θ) is obtained fromHτ

k,t(θ) using:
Hτ
k,t+1(θ) = Hτ

k,t(θ) + γ (yt+1, θ);

• Defining Iτk,t =
{
θ | Hτ

k,t(θ) ≤ Ht
k,t(θ)

}
={

θ | Hτ
k,t(θ) ≤ Ck−1,t

}
the set of θ such that τ is

better than t in terms of cost, with τ < t, then

(ii ) if all
∑t

j=τ+1 γ (yj, θ) are unimodal in θ then Iτk,t
are intervals. Indeed, since by definition
Ht
k,t(θ) = Ck−1,t and the cost function does not

depend on θ , Iτk,t is the set of values for which a
unimodal function is smaller than a constant.

• Finally, we introduce Sτ
k,t =

{
θ | Hτ

k,t(θ) ≤ Hk,t(θ)
}

the set of θ such that τ is optimal. Then since
Hk,t(θ) = minτ≤t

{
Hτ
k,t(θ)

}
, Sτ

k,t can be written as{
θ | Hτ

k,t(θ) = Hk,t(θ)
}
and we obtain that

(iii ) Sτ
k,t+1 can be updated using:

� Sτ
k,t+1 = Sτ

k,t ∩ Iτk,t+1
� Stk,t = Is \ (∪τ∈ListCandidatek Iτk,t)

The first assertion follows from the fact that
Sτ
k,t+1 =

{
θ |Hτ

k,t+1 ≤ mink≤τ≤t+1 Hτ
k,t+1

}
={

θ |Hτ
k,t+1 ≤ min

(
Ht+1
k,t+1, mink≤τ≤t Hτ

k,t+1

)}
,

the first term in the minimum giving Iτk,t+1 and
the second one giving Sτ

k,t . The second assertion
trivially follows from the fact that candidate t is
optimal on the set of values where no other
candidate was optimal.

(iv) once it has been determined that Sτ
k,t is empty, it

easily follows from the update equation (iii) that
the region-border τ can be discarded from the
list of candidates ListCandidatek :

Sτ
k,t = ∅ ⇒ ∀ t′ ≥ t Sτ

k,t′ = ∅.

Requirements of the pruned dynamic programming
algorithm.
Proposition 0.1. Properties (i) to (iv) are satisfied as soon
as the following conditions on the loss c(r, θ) are met:

(a) It is point additive,
(b) It is convex with respect to its parameter θ ,
(c) It can be stored and updated efficiently.

The proof of those claims can be found in [18].
A pseudo-code of the PDP algorithm is given in the
appendix.
It is possible to include an additional penalty term,

denoted g as in the pseudo-code, in the loss function. To
preserve the point-additivity requirement of the loss, this
penalty can only depend on the value of the segment-
parameter θ and not on any other characteristics, such
as segment length. This is then equivalent to minimizing
Ck,t = min{k−1<τ<t}

{
Ck−1,τ + minθ

{
c([τ + 1, t] , θ) + g(θ)

}}
and can be achieved by adding the penalty value g(θ) in
the initialization of Hτ

k,t(θ). For example, in the case of
RNA-seq data one could add a lasso (λ|θ |) or ridge penalty
(λθ2) to encode that a priori the coverage in most regions
should be close to 0. Our C++ implementation of the PDP
algorithm includes the possibility of adding such a penalty
term; however we do not provide an R interface to this
functionality in our R package. One of the reasons for this
choice is that choosing an appropriate value for λ is not a
simple problem.

Contribution
Pruned dynamic programming algorithm for count data
We now show that the PDP algorithm can be applied to
the segmentation of RNA-Seq data using a negative bino-
mial model and we propose a criterion for the choice of K.
Though not discussed here, our results also hold for the
Poisson segmentation model.

Negative binomial model. We consider that in each seg-
ment r all yt are the realization of random variables Yt
which are independent and follow the same negative bino-
mial distribution. Assuming the dispersion parameter φ

to be known, we will use the natural parametrization
from the exponential family (also classically used in R)
so that parameter θr will be the probability of success. In
this framework, θr is specific to segment r whereas φ is
common to all segments.
We have E(Yt) = φ(1−θ)/θ andVar(Yt) = φ(1−θ)/θ2.We

choose the loss as the negative log-likelihood associated
with data-point t belonging to segment r: −φ log(θr) −
yt log(1 − θr) + A(φ, yt), or more simply γ (yt , θr) = −φ

log(θr) − yt log(1 − θr) since A is a function that does not
depend on θr.
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Validity of the pruned dynamic programming algo-
rithm for the negative binomial model
Proposition 0.2. Assuming parameter φ to be known, the
negative binomial model satisfies (a), (b) and (c):

(a) As we assume that Yt are independent, we indeed
have that the loss is point additive: c(r, θ) =∑

t ∈ r γ (yt , θ).
(b) As γ (yt , θ) = −φ log(θ) − yt log(1 − θ) is convex

with respect to θ , c(r, θ) is also convex as the sum of
convex functions.

(c) Finally, we have c(r, θ) = −nrφ log(θ)+∑
t ∈ r yt log(1 − θ) (where nr is the length of

segment r). This function can be stored and updated
using only two doubles: one for−nrφ, say d1, and the
other for

∑
t ∈ r yt , say d2. Then at step t + 1 as the

new datapoint yt+1 is considered, these doubles are
simply updated as d1 ← d1 +φ and d2 ← d2 + yt+1 .

Estimation of the overdispersion parameter. We pro-
pose to estimate φ using a modified version of Johnson
et. al’s estimator [19]: compute the moment estimator of
φ on each sliding window of size h using the formula
φ = E(Y )2/(Var(Y ) − E(Y )) and keep the median φ̂.

Taking into account a positional bias. It is possible that
the assumption that the counts share the same distribu-
tion in a segment might not be verified. For instance in
the case of RNA-Seq data the number of reads can be
affected by the location in the transcribed region or by the
GC-content of the fragment. The pruned dynamic pro-
gramming algorithm only requires a vector of integers as
input, it is therefore possible to apply any kind of normal-
ization process that preserves the count-specificity of the
data prior to segmentation. For instance, a method such as
that which has resulted in the publication of the data used
in the illustration [20] can be applied. A comparison of the
main normalization methods can for example be found in
Bullard et. al.’s paper [21].

C++ implementation of the PDP algorithm
We implemented the PDP algorithm in C++ having in
mind the possibility of adding new loss functions in poten-
tial future applications. The difficulties we had to face
were the versatility of the program to be designed and the
design of the objects it could work on. Indeed, the use of
full templates implied that we used stable sets of objects
for the operations that were to be performed.
Namely:

• The sets were to be chosen in a tribe. This means that
they all belong to a set S of sets such that any set
s ∈ S can be conveniently handled and stored in the

computer. A set of sets S is said to be acceptable if it
satisfies the following:

1. If s belongs to S , R \ s ∈ S
2. If s1, s2 ∈ S , s1 ∩ s2 ∈ S
3. If s1, s2 ∈ S , s1 ∪ s2 ∈ S
For instance, the set S of intervals is a tribe since the
complementary, the union and the intersection of
intervals form a union of intervals. This property
ensures that the sets Iτk,t and Sτ

k,t can be updated and
stored efficiently (only two doubles are required to
store an interval) to take full advantage of the pruning
process.

• The cost functions were chosen in a set F such that

1. Each function may be conveniently handled and
stored by the software.
For instance, for the Gaussian loss it suffices to
store the three coefficients of a second order
polynomial.

2. For any f ∈ F and any constant c, f (x) ≤ c can be
easily solved and the set of solutions belongs to an
acceptable set of sets

3. For any f , g ∈ F , f + g ∈ F .
These two points ensure that the cost (and
penalty) functions can be easily updated and
compared so that the sets Iτk,t of each candidate τ

can be updated and candidates eventually
discarded.

Thus we defined two collections for the sets of sets S ,
intervals and parallelepipeds, and implemented the loss
functions corresponding to negative binomial, Poisson or
normal distributions. The program is thus designed in
a way that any user can add his own cost function or
acceptable set of probability function and use it without
rewriting a line in the code.

Compression of the signal
In the case of count data, and in particular in the analysis
of RNA-Seq data, it is very likely that we observe plateaux,
that is regions between two arbitrary positions t1 and t2
(> t1) where the signal is constant:

∀t, t1 ≤ t ≤ t2, yt = yt1 = yt2 .

Then we have the following proposition, the proof of
which is given in the appendix.
Proposition 0.3. There exists a segmentation m in K or
fewer segments without any change-point in the plateaux
such that the optimal cost of m is equal to CK ,n.
This proposition proves the arguably intuitive idea

that having a change-point between t1 and t2 is never
beneficial in terms of cost. When searching for the best
segmentation of the data, it is therefore unnecessary to
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look for change-points in plateaux. In other words a
plateau starting at position t1 and ending at position t2 can
be considered as a unique data point with value yt1 and
weight t2 − t1 +1. At worst the size of the compressed sig-
nal is equal to the minimum between two times the num-
ber of reads and the length of the chromosome arm. Thus,
if the number of reads is very large, the two-step algorithm
(compression and pruned dynamic programming) does
not change the worst case complexity. However, in most
cases the number of reads is much smaller than the size
of the considered chromosome. Thus compression is effi-
cient and allows for a significant reduction in the overall
run-time. Furthermore, in the case of RNA-Seq data we do
not expect reads to be evenly scattered. On the contrary
they are concentrated in transcribed regions and between
those regions we expect large plateaux of 0 allowing for an
efficient compression (for instance only 2% of the human
chromosome contains coding regions).

Model selection
The last issue concerns the estimate of the number of seg-
ments K. This model selection issue can be solved using a
penalized log-likelihood criterion for which the choice of
a good penalty function is crucial. This kind of procedure
typically requires computation of the optimal segmen-
tations in all k = 1, . . . ,Kmax segments where Kmax is
generally chosen smaller than n. The most popular cri-
teria (AIC [22] and BIC [23]) failed in the segmentation
context due to the discrete nature of the change-points.
Indeed, additionally to being an asymptotic criterion in a
framework where the collection of possible models grows
polynomially with n, the BIC criterion uses a Laplace
approximation requiring differentiability conditions of the
likelihood function which are not satisfied by the seg-
mentation model [24]. From a non-asymptotic point of
view and for the negative binomial model, the follow-
ing criterion was proposed [25]: denoting m̂K the optimal
segmentation of the data in K segments,

K̂ = arg min
K∈1:Kmax

⎧⎨⎩∑
r∈m̂K

∑
t∈r

[
−φ log

φ

φ + ȳr
− yt log

(
1 − φ

φ+ȳr

)]

+ βK
(
1 + 4

√
1.1 + log

( n
K

))2
⎫⎬⎭ ,

(2)

where ȳr =
∑

t∈r yt
n̂r

and n̂r is the size of segment r. The
first term corresponds to the cost of the optimal segmen-
tation while the second is a penalty term which depends
on the dimension K and on a constant β that has to be
tuned according to the data (see the next section). With
this choice of penalty, a so-called oracle penalty, the result-
ing estimator satisfies an oracle-type inequality. A more
complete performance study is done in [25] and showed
that the proposed criterion outperforms the existing ones.

Implementation
The Pruned Dynamic Programming algorithm is available
in the function Segmentor of the R package Segmen-
tor3IsBack. Version 1.7 of this package contains the com-
pression process which is performed by default in the case
of count data. The user can choose the distribution with
the slotmodel (1 for Poisson, 2 for Gaussian homoscedas-
tic, 3 for negative binomial and 4 for segmentation of
the variance). It returns an S4 object of class Segmen-
tor which can later be processed for other purposes. The
function SelectModel provides four criteria for choos-
ing the optimal number of segments: AIC [22], BIC [23],
the modified BIC [24] (available for Gaussian and Poisson
distribution) and oracle penalties (available for the Gaus-
sian distribution [26] and for the Poisson and negative
binomial [25] as described previously). This latter kind of
penalty requires tuning a constant according to the data,
which is done using the slope heuristic [27].
Figure 1 (which is detailed in the Results and discussion

Section) was obtained with the following 4 lines of code
(assuming the data was contained in vector x):

Seg<-Segmentor(x,model=3,Kmax=200)

Kchoose<-SelectModel(Seg, penalty=
"oracle")

plot(sqrt(x),col=’dark red’)

abline(v=getBreaks(Seg)[Kchoose,
1:Kchoose],col=’blue’)

The function BestSegmentation allows us, for a
given K, to find the optimal segmentation with a change-
point at location t (slot $bestSeg). It also provides,
through the slot $bestCost, the cost of the optimal
segmentation with t for jth change-point. Figure 2(Left)
illustrates this result for the optimal segmentations in 4
segments of a signal simulated with only 3 segments. We
can see for instance that any choice of first change-point
location between 1 and 2000 yields almost the same cost
(the minimum is obtained for t = 1481), and thus the
optimal segmentation is not clearly better than the next
best segmentations. On the contrary, the same function
with 3 segments shows that the optimal segmentation
outperforms all other segmentations in 3 segments.

Results and discussion
Performance study
We designed a simulation study on the negative bino-
mial distribution to assess the performance of the PDP
algorithm in terms of computational efficiency without
using the compression option, while studying the impact
of the overdispersion parameter φ by comparing the
results for two different values of this parameter. After
running different estimators (median on sliding windows
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Figure 1 Segmentation of the yeast chromosome 1 using the negative binomial loss. The model selection procedure chooses K = 125
segments, most of which correspond to the official annotation, with segments corresponding to transcribed regions surrounding official genes.

of maximum, quasi-maximum likelihood and moment
estimators) on several real RNA-Seq data (whole chro-
mosome and genes of various sizes), we fixed φ1 = 0.3
as a typical value for highly dispersed data as observed
in real RNA-Seq data and chose φ2 = 2.3 for compari-
son with a reasonably dispersed dataset. For each value,
we simulated datasets of size n with various densities of
number of segments K, and only two possible values for
the parameter pJ : 0.8 on even segments (corresponding to
low signal) and 0.2 on odd segments for a higher signal.
We had n vary on a logarithmic scale between 103 and

106 and K between
√
n/6 and

√
n/3. For each configura-

tion, we segmented the signal up to Kmax = √
n twice:

once with the known value of φ and once with our esti-
mator φ̂ as described above. We started with a window
width h = 15. When the estimate was negative, we dou-
bled h and repeated the experience until the median was
positive.
Each configuration was simulated 100 times.
For our analysis we checked the run-time on a standard

laptop, and assessed the quality of the segmentation using
the Rand Index I . Specifically, let Ct be the true index
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Figure 2 Cost of optimal segmentation in 4 and 3 segments. Cost of optimal segmentation depending on the location of the jth change-point
when the number of segments is 4 (Left) and 3 (Right) and the signal was simulated with 3 segments. Illustration of the output of function
BestSegmentation.
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of the segment to which base t belongs and let Ĉt be the
index estimated by the method, then

I =
2
∑n

s=1
∑

t>s

[
1Ct=Cs1Ĉt=Ĉs

+ 1Ct �=Cs1Ĉt �=Ĉs

]
(n − 1)(n − 2)

.

Figure 3 shows, for the particular case of K = √
n/3, the

almost linear complexity of the algorithm in the size n of
the signal. As the maximal number of segments Kmax con-
sidered increased with n, we normalized the run-time to
allow comparison. This underlines an empirical complex-
ity smaller than O(Kmaxn log n), and independent of the
value of φ or its knowledge. Moreover, the algorithm, and
therefore the pruning, is faster when the overdispersion
is high, a phenomenon already encountered with the L2
loss when the distribution of errors is Cauchy. However,
the knowledge of the true value of φ does not affect the
run-time of the algorithm. Figure 4 illustrates through the
Rand Index the quality of the proposed segmentation for a
few values of n. Even though the indexes are slightly lower
for φ1 than for φ2 (see left panel), they range between
0.94 and 1 showing a great quality in the results. More-
over, the knowledge of φ does not increase the quality (see
right panel), which validates the use of our estimator. We
can therefore conclude that the run-time of our algorithm
without compression is roughly 40 × Kmax × n/106s.

Yeast RNAseq experiment
We applied our algorithm to the segmentation of chromo-
some 1 of the S. Cerevisiae (yeast) using RNA-Seq data
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Figure 3 Run-time analysis for segmentation with negative
binomial distribution. This figure displays the normalized (by Kmax)
run-time in seconds of the Segmentor3IsBack package for the
segmentation of signals with increasing length n, for two values of
the dispersion φ, and with separate analyses for a known value or an
estimated value. While the algorithm is faster for more over-dispersed
data, the estimation of the parameter does not slow the processing.
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Figure 4 Rand Index for the quality of the segmentation. This
figure displays the boxplot of the Rand Index computed for each of
the hundred simulations performed in the following situations:
comparing the values with φ1 and φ2 when estimated (left figure),
and comparing the impact of estimating φ1 (right figure). While the
estimation does not decrease the quality of the segmentation, the
value of the dispersion affects the recovery of the true change-points.

from the Sherlock Laboratory at Stanford University [20],
publicly available from theNCBI’s Sequence Read Archive
(SRA, http://www.ncbi.nlm.nih.gov/sra, accession num-
ber SRA048710). We selected the number of segments
using our oracle penalty described in the previous section.
An existing annotation of translated regions (i.e. exclud-
ing un-translated regions (UTR)) is available on the
Saccharomyces Genome Database (SGD) at http://www.
yeastgenome.org, which allows us to validate our results.
With a run-time of 27 minutes without compression,

and 5.4 minutes with compression (for a signal length
of 230218), we selected 125 segments with the negative
binomial distribution. Most of those segments (all but
3) can be related to the official annotation, however as
expected segments corresponding to transcribed regions
(as opposed to intergenic regions) were found to surround
known genes from the SGD due to the difference between
transcribed and translated regions. Figure 1 illustrates the
result.
We compared our segmentation with that correspond-

ing to the SGD annotation through the Hellinger distance
by fitting a negative binomial distribution on each seg-
ment and repeated this comparison with the other two
algorithms able to process long count datasets: PELT [16]
and Binary Segmentation [6], both implemented in the R
package changepoint for the Poisson distribution. For

http://www.ncbi.nlm.nih.gov/sra
http://www.yeastgenome.org
http://www.yeastgenome.org
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fair comparison, we also used the PDP algorithm for the
Poisson loss. Figure 5, together with Table 1 which gives
the estimated number of segments, the overall Hellinger
score

(∑
t Ht/n

)
and the number of change-points falling

within annotated translated regions, illustrates the result
and shows that we outperform the other approaches.
Moreover, most of the Hellinger peaks observed can
be explained by the fact that we are comparing the
annotation of transcribed regions with that of translated
regions.

Analysis of complex organisms
The issues raised in the analysis of RNA-Seq and DNA-
Seq data differ. In the first case, the number of seg-
ments that we hope to select is roughly twice the number
of expressed exons, therefore the order of Kmax varies
from 102 (small chromosomes from lower organisms, e.g.
yeast) to 104 (large chromosomes from higher organ-
isms, e.g. human). However, when aligned to a refer-
ence genome, RNA-Seq data is expected to present large
plateaux of zeros at non-coding regions (for instance, 98%

Table1 Comparison of algorithmperformance on real data

Algorithm Number of Hellinger False
segments score positives

PDPA- negative binomial 125 0.0120 39

PDPA- Poisson 106 0.0187 77

PELT 3416 0.0188 3003

Binary Segmentation 2408 0.0151 2072

Overall Hellinger score of each of the segmentation algorithms, and number of
estimated change-points falling within regions annotated as translated (thus
considered as false positives).

of the human genome) and at non expressed regions.
The compression option of our algorithm then allows
us to reduce the size of the profile by a factor of 10 to
103. Moreover, it is well-known that centromere regions
are large non-coding regions where no change-point is
expected, and we therefore propose to divide the profile
into two parts at such regions. As a proof of concept we
ran our algorithm with compression on an RNA-seq pro-
file of the small arm of the 4th chromosome ofArabidopsis
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bottom: Binary segmentation) and that of the SGD. The PDP algorithmwith the negative binomial distribution seems to outperform other algorithms.
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Thaliana
(
n = 4.106, Kmax = 6.103

)
and selected 4289

segments after a compression factor of 10 and a run-time
of 19 hours on a 2.4Ghz computer. The data was kindly
provided by some of our collaborators.
DNA-Seq data on the other hand will present much

smaller plateaux. While this implies that the compression
will be less efficient, the profile can still be summa-
rized into a dataset the length of which will be smaller
than the total amount of mapped reads.Most impor-
tantly, in these experiments the expected number of
segments is drastically smaller as the number of chro-
mosomic aberrations is generally limited to less than one
hundred per chromosome, even in pathologies such as
cancer.

Conclusion
Segmentation has been a useful tool for the analysis
of biological datasets for a few decades. We propose
to extend its application with the use of the Pruned
Dynamic Programming algorithm for count datasets such
as outputs of sequencing experiments. We show that
the negative binomial distribution can be used to model
such datasets on the condition that the overdispersion
parameter is known and have proposed an estimator of
this parameter that performs well in our segmentation
framework.
We propose to choose the number of segments using

our oracle penalty criterion, which makes the package
fully operational. This package also allows the use of other
criteria such as AIC or BIC. Similarly, the algorithm is
not restricted to the negative binomial distribution but
also allows the use of Poisson and Gaussian losses for
instance and could easily be adapted to other convex
one-parameter losses.
With its empirical complexity of O(Kmaxn log n), it

can be applied to large signals such as read-alignment
of whole chromosomes, and we illustrated its result
on a real dataset from the yeast genomes. Moreover,
this algorithm can be used as a base for further anal-
ysis. For example, [28] use it to initialize their Hid-
den Markov Model to compute change-point location
probabilities.

Availability and requirements
• Project name: Segmentor3IsBack
• Project home page: http://cran.r-project.org/web/

packages/Segmentor3IsBack/index.html
• Operating systems: Platform independent
• Programming language: C++ code embedded in R

package
• License: GNU GPL
• Any restrictions to use by non-academics: none

Appendix
Pseudo-code of the PDP algorithm

Algorithm 1 The PDP algorithm
Input: yi a sequence of n data-points, K an integer

Is a set of possible values for θ
γ the loss function, g a penalty function

Output: Ck,t a matrix of floats of size K × n
Mk,t a matrix of integers of size K × n

Initialize
For t ∈ {1, . . . n}

C1,t = minθ∈Is
{∑t

i=1 γ (yi, θ) + g(θ)
}

M1,t = 0
End For

Main
For k ∈ {2, . . .K}

ListCandidatek = {k − 1}
Hk−1
k,k−1(θ) = Ck−1,k−1 + g(θ)

Sk−1
k,k−1 = Is
Mk,k = k − 1
For t ∈ {k, . . . n}

For τ ∈ ListCandidatek
Hτ
k,t(θ) = Hτ

k,t−1(θ) + γ (yt , θ)

Iτk,t =
{
θ |Hτ

k,t(θ) � Ck−1,t + g(θ)
}

Sτ
k,t = Sτ

k,t−1 ∩ Iτk,t
EndFor
Ck,t = minτ∈ListCandidatek

{
minθ∈Is Hτ

k,t(θ)
}

Mk,t = argminτ∈ListCandidatek
{
minθ∈Is Hτ

k,t(θ)
}

For τ ∈ ListCandidatek
If [Sτ

k,t = ∅]
ListCandidatek = ListCandidatek \ {τ}

EndIf
EndFor
Stk,t = Is \ (∪τ∈ListCandidatek Iτk,t)
If [Stk,t �= ∅]

ListCandidatek = ListCandidatek ∪ {t}
Ht
k,t(θ) = Ck−1,t + g(θ)

EndIf
EndFor

EndFor

Proof of Proposition 0.3
Searching for one change-point Let us first consider a
segmentation in 2 segments with a breakpoint at t. We
define Pt(θ1, θ2), the cost of this segmentation given some
parameter θ1 for the first segment and θ2 for the second
segment:

Pt(θ1, θ2) =
t∑

i=1
γ (yi, θ1) +

n∑
i=t+1

γ (yi, θ2).

The optimal cost Pt is:

Pt = minθ1

{ t∑
i=1

γ (yi, θ1)

}
+ minθ2

{ n∑
i=t+1

γ (yi, θ2)

}
.

Having these notations, let us prove the following
lemma:
Lemma 0.4.

• If t1 = 1 and t2 = n then ∀ t Pt ≥ C1,n
• If t1 = 1 and t2 < n then ∀ t1 − 1 ≤ t ≤ t2 we have

Pt ≥ Pt2

http://cran.r-project.org/web/packages/Segmentor3IsBack/index.html
http://cran.r-project.org/web/packages/Segmentor3IsBack/index.html
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• If t1 > 1 and t2 = n then ∀ t1 − 1 ≤ t ≤ t2 we have
Pt ≥ Pt1−1

• If t1 > 1 and t2 < n then ∀ t1 − 1 ≤ t ≤ t2 we have
Pt ≥ min

{
Pt1−1, Pt2

}
Proof

First scenario [t1 = 1 and t2 = n] We have:

Pt = t.minθ1

{
γ (y1, θ1)

}+ (n− t).minθ2

{
γ (y1, θ2)

} = C1,n.

Thus we get: Pt ≥ C1,n.

Second scenario [t1 = 1 and t2 < n] For any t such that
t ≤ t2 we have:

Pt = t.minθ

{
γ (y1, θ)

}
+ minθ

⎧⎨⎩(t2 − t)γ (y1, θ) +
n∑

i=t2+1
γ (yi, θ)

⎫⎬⎭ .

Thus we have:
Pt ≥ t.minθ

{
γ (y1, θ1)

} + (t2 − t).minθ

{
γ (y1, θ)

}
+ minθ

⎧⎨⎩
n∑

i=t2+1
γ (yi, θ)

⎫⎬⎭ .

And we get ∀ t ≤ t2 Pt ≥ Pt2 .

Third scenario [t1 > 1 and t2 = n] We get ∀ t1 − 1 ≤
t Pt ≥ Pt1−1 by reversing the index and using scenario 2.

Fourth scenario [t1 > 1 and t2 < n] For any t such that
t1 − 1 ≤ t ≤ t2 we obtain:

Pt(θ1, θ2) =
t1−1∑
i=1

γ (yi, θ1) +
n∑

i=t2+1
γ (yi, θ2)

+ (t − t1 + 1)γ (yt1 , θ1) + (t2 − t)γ (yt1 , θ2).

Thus, for fixed θ1 and θ2 and for t ∈ [t1 − 1, t2], Pt(θ1, θ2)
is a linear function of t. Thus we obtain that for any θ1 and
θ2:

Pt(θ1, θ2) ≥ min
{
Pt1−1(θ1, θ2),Pt2 (θ1, θ2)

} ≥ min
{
Pt1−1,Pt2

}
.

As this is true for any θ1 and θ2 we get Pt ≥
min

{
Pt1−1, Pt2

}
�

Proof of the main proposition Assume that we have
a segmentation m in MK ,n with a breakpoint τk in
a plateau. Then applying lemma 0.4 on the sequence
{yi}i∈{τk−1,...τk+1} we see that τk can either be discarded or
moved to t1 − 1 or t2 without increasing the cost. Thus

there exists a segmentation in K or fewer segments with-
out any change-point in the plateau such that its optimal
cost is CK ,n. �
This theorem ismore subtle thanwemight have thought

based on our intuition. It does not mean that a change-
point in a plateau is never optimal but only that it is not
necessary to have change-points in plateaux to achieve
optimality.
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