14 research outputs found

    First direct observation of two protons in the decay of 45^{45}Fe with a TPC

    Get PDF
    The decay of the ground-state two-proton emitter 45Fe was studied with a time-projection chamber and the emission of two protons was unambiguously identified. The total decay energy and the half-life measured in this work agree with the results from previous experiments. The present result constitutes the first direct observation of the individual protons in the two-proton decay of a long-lived ground-state emitter. In parallel, we identified for the first time directly two-proton emission from 43Cr, a known beta-delayed two-proton emitter. The technique developped in the present work opens the way to a detailed study of the mechanism of ground-state as well as beta-delayed two-proton radioactivity.Comment: 4 pages, 5 figure

    Indirect measurements of neutron-induced reaction cross sections at storage rings

    Get PDF
    Neutron-induced reaction cross sections of unstable nuclei are essential for understanding the synthesis of heavy elements in stars. However, their measurement is very difficult due to the radioactivity of the targets involved. We propose to circumvent this problem by using for the first time the surrogate reaction method in inverse kinematics at heavy-ion storage rings. In this contribution, we describe the developments we have done to perform surrogate-reaction studies at the storage rings of GSI/FAIR. In particular, we present the first results of the proof of principle experiment, which we conducted recently at the Experimental Storage Ring (ESR)

    Indirect measurements of neutron-induced cross-sections at heavy-ion storage rings

    No full text
    Cross sections for neutron-induced reactions of short-lived nuclei are essential for nuclear astrophysics since these reactions in the stars are responsible for the production of most heavy elements in the universe. These reactions are also key in applied domains like energy production and medicine. Nevertheless, neutron-induced cross-section measurements can be extremely challenging or even impossible to perform due to the radioactivity of the targets involved. Indirect measurements through the surrogate-reaction method can help to overcome these difficulties. The surrogate-reaction method relies on the use of an alternative reaction that will lead to the formation of the same excited nucleus as in the neutron-induced reaction of interest. The decay probabilities (for fission, neutron and gamma-ray emission) of the nucleus produced via the surrogate reaction allow one to constrain models and the prediction of the desired neutron cross sections. We propose to perform surrogate reaction measurements in inverse kinematics at heavy-ion storage rings, in particular at the CRYRING@ESR of the GSI/FAIR facility. We present the conceptual idea of the most promising setup to measure for the first time simultaneously the fission, neutron and gamma-ray emission probabilities. The results of the first simulations considering the 238U(d,d’) reaction are shown, as well as new technical developments that are being carried out towards this set-

    Future Perspectives for Surrogate-Reaction Studies at Storage Rings

    No full text
    Surrogate reactions are the most promising alternative method to indirectly infer neutron-induced cross sections. They can constrain key parameters for the theoretical prediction of the neutron-induced cross sections. Several experimental studies have been devoted to this topic and have demonstrated the potential of such approach. Nevertheless, to overcome certain experimental restrains new experiments are being designed to provide new and better-quality data. Here we present the current developments aiming at performing surrogate-reaction studies in inverse kinematics at storage rings

    First investigation of the response of solar cells to heavy ions above 1 AMeV

    No full text
    Solar cells have been used since several decades for the detection of fission fragments at about 1 AMeV. The advantages of solar cells regarding their cost (few euros) and radiation damage resistance make them an interesting candidate for heavy ion detection and an appealing alternative to silicon detectors. A first exploratory measurement of the response of solar cells to heavy ions at energies above 1 AMeV has been performed at the GANIL facility, Caen, France. Such measurements were performed with 84 Kr and 129 Xe beams ranging from 7 to 13 AMeV. The energy and time response of several types of solar cells were studied. The best performance was observed for cells of 10x10 mm 2 , with an energy and time resolution of σ (E)/E=1.4% and 3.6 ns (FWHM), respectively. Irradiations at rates from a few hundred to 10 6 particles per second were also performed to investigate the behavior of the cells with increasing intensity

    2p radioactivity studies with a TPC

    No full text
    After the discovery of two-proton radioactivity in 2002, an important effort has been made in order to observe each emitted particle individually. Energy and angular correlations between the protons should reveal details about the mechanism of this exotic decay mode. In this framework, an experiment has been performed at LISE/GANIL, where the two protons emitted in the decay of 54Zn have been individually observed for the first time. Angular and energy correlations were determined and allowed a first comparison with theoretical predictions

    Indirect measurements of neutron-induced reaction cross sections at heavy-ion storage rings

    Get PDF
    Neutron-induced reaction cross sections of unstable nuclei are essential for understanding the synthesis of heavy elements in stars and for applications in nuclear technology. However, their measurement is very complicated due to the radioactivity of the targets involved. We propose to circumvent this problem by using the surrogate reaction method in inverse kinematics, where the nucleus formed in the neutron- induced reaction of interest is produced by a reaction involving a radioactive heavy-ion beam and a stable, light target nucleus. The probabilities as a function of the compound-nucleus excitation energy for γ-ray emission, neutron emission and fission, which can be measured with the surrogate reaction, are particularly useful to constrain model parameters and to obtain more accurate predictions of the neutron-induced reaction cross sections of interest. Yet, the full development of the surrogate method is hampered by numerous long- standing target issues, which can be solved by combining surrogate reactions with the unique and largely unexplored possibilities at heavy-ion storage rings. In this contribution, we describe the developments we are carrying out to measure for the first time simultaneously γ-ray emission, neutron emission and fission probabilities at the storage rings of the GSI/FAIR facility. In particular, we will present the first results of the proof of principle experiment, which we performed in June 2022 at the Experimental Storage Ring (ESR) of GSI/FAIR
    corecore