430 research outputs found
Fractional semantics for classical logic
This article presents a new (multivalued) semantics for classical propositional logic.
We begin by maximally extending the space of sequent proofs so as to admit proofs for any logical formula; then, we extract the new semantics by focusing on the axiomatic structure of proofs. In particular, the interpretation of a formula is given by the ratio between the number of identity axioms out of the total number of axioms occurring in any of its proofs. The outcome is an informational refinement of traditional Boolean semantics, obtained by breaking the symmetry between tautologies and contradictions
The Implicit Commitment of Arithmetical Theories and Its Semantic Core
According to the implicit commitment thesis, once accepting a mathematical formal system S, one is implicitly committed to additional resources not immediately available in S. Traditionally, this thesis has been understood as entailing that, in accepting S, we are bound to accept reflection principles for S and therefore claims in the language of S that are not derivable in S itself. It has recently become clear, however, that such reading of the implicit commitment thesis cannot be compatible with well-established positions in the foundations of mathematics which consider a specific theory S as self-justifying and doubt the legitimacy of any principle that is not derivable in S: examples are Tait’s finitism and the role played in it by Primitive Recursive Arithmetic, Isaacson’s thesis and Peano Arithmetic, Nelson’s ultrafinitism and sub-exponential arithmetical systems. This casts doubts on the very adequacy of the implicit commitment thesis for arithmetical theories. In the paper we show that such foundational standpoints are nonetheless compatible with the implicit commitment thesis. We also show that they can even be compatible with genuine soundness extensions of S with suitable form of reflection. The analysis we propose is as follows: when accepting a system S, we are bound to accept a fixed set of principles extending S and expressing minimal soundness requirements for S, such as the fact that the non-logical axioms of S are true. We call this invariant component the semantic core of implicit commitment. But there is also a variable component of implicit commitment that crucially depends on the justification given for our acceptance of S in which, for instance, may or may not appear (proof-theoretic) reflection principles for S. We claim that the proposed framework regulates in a natural and uniform way our acceptance of different arithmetical theories
Analyticity with extra-logical information
In this paper, a new approach to the issue of extra-logical information within analytic (i.e. obeying the sub-formula property) sequent systems is introduced. We prove that incorporating extra-logical axioms into a purely logical system can preserve analyticity, provided these axioms belong to a suitable class of formulas that can be decomposed into a set of equivalent initial sequents and are permutable over the cut rule. Our approach is applicable not only to first-order classical and intuitionistic logics, but also to substructural logics. Furthermore, we establish a limit for the augmented systems under analysis: exceeding the boundaries of their respective classes of extra-logical axioms leads to either a loss of analyticity or a loss of structural properties
Implementing clinical guidelines in an organizational setup
Outcomes research in healthcare has been a topic much addressed in recent years. Efforts in this direction have been supplemented by work in the areas of guidelines for clinical practice and computer-interpretable workflow and careflow models.In what follows we present the outlines of a framework for understanding the relations between organizations, guidelines, individual patients and patient-related functions. The derived framework provides a means to extract the knowledge contained in the guideline text at different granularities, in ways that can help us to assign tasks within the healthcare organization and to assess clinical performance in realizing the guideline. It does this in a way that preserves the flexibility of the organization in the adoption of the guidelines
Fractional-valued modal logic and soft bilateralism
In a recent paper, under the auspices of an unorthodox variety of bilateralism, we introduced a new kind of proof-theoretic semantics for the base modal logic K, whose values lie in the closed interval [0, 1] of rational numbers. In this paper, after clarifying our conception of bilateralism – dubbed “soft bilateralism” – we generalize the fractional method to encompass extensions and weakenings of K. Specifically, we introduce well-behaved hypersequent calculi for the deontic logic D and the non-normal modal logics E and M and thoroughly investigate their structural properties
Non-contractive logics, paradoxes, and multiplicative quantifiers
The paper investigates from a proof-theoretic perspective various non-contractive logical systems, which circumvent logical and semantic paradoxes. Until recently, such systems only displayed additive quantifiers (Grišin and Cantini). Systems with multiplicative quantifiers were proposed in the 2010s (Zardini), but they turned out to be inconsistent with the naive rules for truth or comprehension. We start by presenting a first-order system for disquotational truth with additive quantifiers and compare it with Grišin set theory. We then analyze the reasons behind the inconsistency phenomenon affecting multiplicative quantifiers. After interpreting the exponentials in affine logic as vacuous quantifiers, we show how such a logic can be simulated within a truth-free fragment of a system with multiplicative quantifiers. Finally, we establish that the logic for these multiplicative quantifiers (but without disquotational truth) is consistent, by proving that an infinitary version of the cut rule can be eliminated. This paves the way to a syntactic approach to the proof theory of infinitary logic with infinite sequents
Fractional-valued modal logic
This paper is dedicated to extending and adapting to modal logic the approach of fractional semantics to classical logic. This is a multi-valued semantics governed by pure proof-theoretic considerations, whose truth-values are the rational numbers in the closed interval [0,1] . Focusing on the modal logic K, the proposed methodology relies on three key components: bilateral sequent calculus, invertibility of the logical rules, and stability (proof-invariance). We show that our semantic analysis of K affords an informational refinement with respect to the standard Kripkean semantics (a new proof of Dugundji’s theorem is a case in point) and it raises the prospect of a proof-theoretic semantics for modal logic
- …