306 research outputs found

    Polarization control of metal-enhanced fluorescence in hybrid assemblies of photosynthetic complexes and gold nanorods

    Get PDF
    Fluorescence imaging of hybrid nanostructures composed of a bacterial light-harvesting complex LH2 and Au nanorods with controlled coupling strength is employed to study the spectral dependence of the plasmon-induced fluorescence enhancement. Perfect matching of the plasmon resonances in the nanorods with the absorption bands of the LH2 complexes facilitates a direct comparison of the enhancement factors for longitudinal and transverse plasmon frequencies of the nanorods. We find that the fluorescence enhancement due to excitation of longitudinal resonance can be up to five-fold stronger than for the transverse one. We attribute this result, which is important for designing plasmonic functional systems, to a very different distribution of the enhancement of the electric field due to the excitation of the two characteristic plasmon modes in nanorods

    Методика проектирования и технологическая схема повторной ликвидации наклонных стволов закрытых угольных шахт

    Get PDF
    На основе аналитических и технологических исследований разработаны методика проектирования и технологическая схема повторной ликвидации наклонных выработок закрытых шахт способом тампонажа ресурсосберегающими безусадочными смесями. Технология позволяет обеспечить геомеханическую устойчивость породного массива

    An ellipsoidal mirror for focusing neutral atomic and molecular beams

    Get PDF
    Manipulation of atomic and molecular beams is essential to atom optics applications including atom lasers, atom lithography, atom interferometry and neutral atom microscopy. The manipulation of charge-neutral beams of limited polarizability, spin or excitation states remains problematic, but may be overcome by the development of novel diffractive or reflective optical elements. In this paper, we present the first experimental demonstration of atom focusing using an ellipsoidal mirror. The ellipsoidal mirror enables stigmatic off-axis focusing for the first time and we demonstrate focusing of a beam of neutral, ground-state helium atoms down to an approximately circular spot, (26.8±0.5) μm×(31.4±0.8) μm in size. The spot area is two orders of magnitude smaller than previous reflective focusing of atomic beams and is a critical milestone towards the construction of a high-intensity scanning helium microscope

    An ellipsoidal mirror for focusing neutral atomic and molecular beams

    Get PDF
    Manipulation of atomic and molecular beams is essential to atom optics applications including atom lasers, atom lithography, atom interferometry and neutral atom microscopy. The manipulation of charge-neutral beams of limited polarizability, spin or excitation states remains problematic, but may be overcome by the development of novel diffractive or reflective optical elements. In this paper, we present the first experimental demonstration of atom focusing using an ellipsoidal mirror. The ellipsoidal mirror enables stigmatic off-axis focusing for the first time and we demonstrate focusing of a beam of neutral, ground-state helium atoms down to an approximately circular spot, (26.8±0.5) μm×(31.4±0.8) μm in size. The spot area is two orders of magnitude smaller than previous reflective focusing of atomic beams and is a critical milestone towards the construction of a high-intensity scanning helium microscope

    Evaluation of the Effects of Powder Coating Cure Temperatures on the Mechanical Properties of Aluminum Alloy Substrates

    Get PDF
    The effects of curing temperature, based on new, low-temperature powder coating methods and traditional high-temperature powder coating methods, were studied. Heat-sensitive aluminum alloys (2024-T3, 6061-T6, and 7075-T6) were subjected to two different heat-treatment cycles, which were based on temperatures of 121 and 204 degrees C. Findings indicate that although both cure temperatures achieved powder coatings adhesion and thickness appropriate for industrial uses, the high-temperature cure treatment negatively affected the mechanical properties

    Analysis of Heat Effects on Marine Corps AM2 Mat Mechanical Properties

    Get PDF
    Navy AM2 mats are used as portable aircraft landing platforms for the Short Take-off/Vertical Landing (STOVL) aircraft operations. This investigation presents the study performed to determine whether the surface discoloration is a precursor to degradation in the mechanical property of the AM2 mat material. The red discoloration on the mat surfaces had a clear correlation with the decrease in yield strength, ultimate strength, and hardness properties

    Generation of photovoltage in graphene on a femtosecond time scale through efficient carrier heating

    Get PDF
    Graphene is a promising material for ultrafast and broadband photodetection. Earlier studies addressed the general operation of graphene-based photo-thermoelectric devices, and the switching speed, which is limited by the charge carrier cooling time, on the order of picoseconds. However, the generation of the photovoltage could occur at a much faster time scale, as it is associated with the carrier heating time. Here, we measure the photovoltage generation time and find it to be faster than 50 femtoseconds. As a proof-of-principle application of this ultrafast photodetector, we use graphene to directly measure, electrically, the pulse duration of a sub-50 femtosecond laser pulse. The observation that carrier heating is ultrafast suggests that energy from absorbed photons can be efficiently transferred to carrier heat. To study this, we examine the spectral response and find a constant spectral responsivity between 500 and 1500 nm. This is consistent with efficient electron heating. These results are promising for ultrafast femtosecond and broadband photodetector applications.Comment: 6 pages, 4 figure

    SupeRNAlign: a new tool for flexible superposition of homologous RNA structures and inference of accurate structure-based sequence alignments

    Get PDF
    RNA has been found to play an ever-increasing role in a variety of biological processes. The function of most non-coding RNA molecules depends on their structure. Comparing and classifying macromolecular 3D structures is of crucial importance for structure-based function inference and it is used in the characterization of functional motifs and in structure prediction by comparative modeling. However, compared to the numerous methods for protein structure superposition, there are few tools dedicated to the superimposing of RNA 3D structures. Here, we present SupeRNAlign (v1.3.1), a new method for flexible superposition of RNA 3D structures, and SupeRNAlign-Coffee—a workflow that combines SupeRNAlign with T-Coffee for inferring structure-based sequence alignments. The methods have been benchmarked with eight other methods for RNA structural superposition and alignment. The benchmark included 151 structures from 32 RNA families (with a total of 1734 pairwise superpositions). The accuracy of superpositions was assessed by comparing structure-based sequence alignments to the reference alignments from the Rfam database. SupeRNAlign and SupeRNAlign-Coffee achieved significantly higher scores than most of the benchmarked methods: SupeRNAlign generated the most accurate sequence alignments among the structure superposition methods, and SupeRNAlign-Coffee performed best among the sequence alignment methods
    corecore