17 research outputs found

    Stability of yield and other characters of sunflower across environments

    Get PDF

    Coupling Wastewater Treatment with Microalgae Biomass Production: Focusing on Biomass Generation and Treatment Efficiency

    Get PDF
    Combination of suitable algae species with wastewater condition is important to achieve high productivity of algae with remarkable removal of contaminants. However, the usage of algae in treating wastewater has not yet to show sufficient removal efficiency when the biomass productivity is extremely enhanced. This review aims to scrutinize and discuss: (1) several promising species for this coupling method; (2) main wastewater characteristics related to the microalgae biomass production and their removal efficiency; (3) metal occurrences and other biotic factors; and (4) constraint of microalgae biomass production and wastewater treatment process. Microalgae such as Chlorella, Spirulina and Scenedesmus are among the most utilized microalgae because of their utilities. Chemical oxygen demand (COD) total nitrogen (TN), and total phosphorous (TP) concentrations affect biomass yield of algae cultivation. Metals occurrences, light intensity and carbon dioxide availability play an important role in process of algae cultivation with diverse optimum levels of each factor. Sufficient but not excess concentration of N and P solely for building biomass and other metabolism activities, mixotrophic condition for algae to digest organic carbon, and heavy metals defense mechanisms are expected to address constraint of biomass generation demand and wastewater treatment efficiency

    āļœāļĨāļ‚āļ­āļ‡āļāļēāļĢāļˆāļąāļ”āļāļēāļĢāđ€āļĢāļĩāļĒāļ™āļāļēāļĢāļŠāļ­āļ™āļ„āļ§āļēāļĄāļĢāļđāđ‰āļ”āđ‰āļēāļ™āđ€āļ—āļ„āđ‚āļ™āđ‚āļĨāļĒāļĩāļ—āļĩāđˆāļĄāļĩāļ•āđˆāļ­ TPACK āļ‚āļ­āļ‡āļ™āļīāļŠāļīāļ•āļ„āļĢāļđāļ„āļ“āļīāļ•āļĻāļēāļŠāļ•āļĢāđŒāļ—āļĩāđˆāļĄāļĩāļ„āļ§āļēāļĄāļĢāļđāđ‰āļ”āđ‰āļēāļ™āļ§āļīāļ˜āļĩāļŠāļ­āļ™āđāļĨāļ°āļ„āļ§āļēāļĄāļĢāļđāđ‰āļ”āđ‰āļēāļ™āđ€āļ™āļ·āđ‰āļ­āļŦāļē

    Get PDF
    Result of Teaching Technological Knowledge for TPACK of Pre–Service Mathematics Teachers with Pedagogical Knowledge and Content Knowledge   Veeris Kittivarakul, Khawn Piasai, Sukanya Hajisalah, Anek Janjaroon and Teerasak Chaladgarn   āļĢāļąāļšāļšāļ—āļ„āļ§āļēāļĄ: 6 āļžāļĪāļĐāļ āļēāļ„āļĄ 2565; āđāļāđ‰āđ„āļ‚āļšāļ—āļ„āļ§āļēāļĄ: 5 āļĄāļāļĢāļēāļ„āļĄ 2566; āļĒāļ­āļĄāļĢāļąāļšāļ•āļĩāļžāļīāļĄāļžāđŒ: 18 āļĄāļĩāļ™āļēāļ„āļĄ 2566; āļ•āļĩāļžāļīāļĄāļžāđŒāļ­āļ­āļ™āđ„āļĨāļ™āđŒ: 5 āļĄāļīāļ–āļļāļ™āļēāļĒāļ™ 2566 (Abstract) 6 āļĄāļīāļ–āļļāļ™āļēāļĒāļ™ 2566 (Authorproof)   āļšāļ—āļ„āļąāļ”āļĒāđˆāļ­  āļ‡āļēāļ™āļ§āļīāļˆāļąāļĒāļ™āļĩāđ‰āļĄāļĩāļ§āļąāļ•āļ–āļļāļ›āļĢāļ°āļŠāļ‡āļ„āđŒāđ€āļžāļ·āđˆāļ­āļĻāļķāļāļĐāļēāļ„āļ§āļēāļĄāļĢāļđāđ‰āđƒāļ™āļāļēāļĢāļšāļđāļĢāļ“āļēāļāļēāļĢāđ€āļ—āļ„āđ‚āļ™āđ‚āļĨāļĒāļĩāļāļąāļšāļ§āļīāļ˜āļĩāļŠāļ­āļ™āđāļĨāļ°āđ€āļ™āļ·āđ‰āļ­āļŦāļē (TPACK) āđƒāļ™ 3 āļ”āđ‰āļēāļ™ āđ„āļ”āđ‰āđāļāđˆ 1) āļ”āđ‰āļēāļ™āļāļēāļĢāļšāļđāļĢāļ“āļēāļāļēāļĢāļ„āļ§āļēāļĄāļĢāļđāđ‰āļ”āđ‰āļēāļ™āđ€āļ—āļ„āđ‚āļ™āđ‚āļĨāļĒāļĩāļāļąāļšāđ€āļ™āļ·āđ‰āļ­āļŦāļē (TCK) 2) āļ”āđ‰āļēāļ™āļāļēāļĢāļ­āļ­āļāđāļšāļšāļāļēāļĢāļˆāļąāļ”āļāļēāļĢāđ€āļĢāļĩāļĒāļ™āļāļēāļĢāļŠāļ­āļ™āļ‚āļ­āļ‡ (TPACK–1) āđāļĨāļ° 3) āļ”āđ‰āļēāļ™āļ­āļ­āļāđāļšāļšāļ§āļīāļ˜āļĩāļāļēāļĢāļ§āļąāļ”āđāļĨāļ°āļ›āļĢāļ°āđ€āļĄāļīāļ™āļœāļĨāļāļēāļĢāđ€āļĢāļĩāļĒāļ™āļĢāļđāđ‰ (TPACK–2) āļāļĨāļļāđˆāļĄāđ€āļ›āđ‰āļēāļŦāļĄāļēāļĒāđ€āļ›āđ‡āļ™āļ™āļīāļŠāļīāļ•āļ„āļĢāļđāļ„āļ“āļīāļ•āļĻāļēāļŠāļ•āļĢāđŒāļŠāļąāđ‰āļ™āļ›āļĩāļ—āļĩāđˆ 4 āļˆāļģāļ™āļ§āļ™ 31 āļ„āļ™ āļ‚āļ­āļ‡āļĄāļŦāļēāļ§āļīāļ—āļĒāļēāļĨāļąāļĒāđāļŦāđˆāļ‡āļŦāļ™āļķāđˆāļ‡ āđ‚āļ”āļĒāđ€āļĨāļ·āļ­āļāļāļĨāļļāđˆāļĄāđ€āļ›āđ‰āļēāļŦāļĄāļēāļĒāđāļšāļšāđ€āļˆāļēāļ°āļˆāļ‡āļ‹āļķāđˆāļ‡āđ€āļ›āđ‡āļ™āļ™āļīāļŠāļīāļ•āļ„āļĢāļđāļ—āļĩāđˆāļĄāļĩāļ„āļ§āļēāļĄāļĢāļđāđ‰āļ”āđ‰āļēāļ™āļ§āļīāļ˜āļĩāļŠāļ­āļ™ (PK) āđāļĨāļ°āļ„āļ§āļēāļĄāļĢāļđāđ‰āļ”āđ‰āļēāļ™āđ€āļ™āļ·āđ‰āļ­āļŦāļē (CK) āļāļēāļĢāļ”āļģāđ€āļ™āļīāļ™āļāļēāļĢāļ§āļīāļˆāļąāļĒāđƒāļ™āļ„āļĢāļąāđ‰āļ‡āļ™āļĩāđ‰āļ›āļĢāļ°āļāļ­āļšāļ”āđ‰āļ§āļĒ 5 āļ‚āļąāđ‰āļ™āļ•āļ­āļ™ āđ„āļ”āđ‰āđāļāđˆ āļ‚āļąāđ‰āļ™āļ•āļ­āļ™āļ—āļĩāđˆ 1 āļāļēāļĢāļāļģāļŦāļ™āļ”āļāļĢāļ­āļšāđāļ™āļ§āļ„āļīāļ”āđƒāļ™āļāļēāļĢāļ›āļĢāļ°āđ€āļĄāļīāļ™ TPACK āļ‚āļ­āļ‡āļ™āļīāļŠāļīāļ•āļ„āļĢāļđāļ„āļ“āļīāļ•āļĻāļēāļŠāļ•āļĢāđŒ āļ‚āļąāđ‰āļ™āļ•āļ­āļ™āļ—āļĩāđˆ 2 āļāļēāļĢāļāļģāļŦāļ™āļ”āļāļĨāļļāđˆāļĄāđ€āļ›āđ‰āļēāļŦāļĄāļēāļĒāļ—āļĩāđˆāđƒāļŠāđ‰āđƒāļ™āļāļēāļĢāļ§āļīāļˆāļąāļĒ āļ‚āļąāđ‰āļ™āļ•āļ­āļ™āļ—āļĩāđˆ 3 āļ”āļģāđ€āļ™āļīāļ™āļāļēāļĢāļˆāļąāļ”āļāļēāļĢāđ€āļĢāļĩāļĒāļ™āļāļēāļĢāļŠāļ­āļ™āļ„āļ§āļēāļĄāļĢāļđāđ‰āļ”āđ‰āļēāļ™āđ€āļ—āļ„āđ‚āļ™āđ‚āļĨāļĒāļĩ āļ‚āļąāđ‰āļ™āļ•āļ­āļ™āļ—āļĩāđˆ 4 āļāļēāļĢāđ€āļāđ‡āļšāļĢāļ§āļšāļĢāļ§āļĄāļ‚āđ‰āļ­āļĄāļđāļĨ āđāļĨāļ°āļ‚āļąāđ‰āļ™āļ•āļ­āļ™āļ—āļĩāđˆ 5 āļāļēāļĢāļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒāļ‚āđ‰āļ­āļĄāļđāļĨ āđ‚āļ”āļĒāļāļēāļĢāļ›āļĢāļ°āđ€āļĄāļīāļ™āļˆāļēāļāđāļœāļ™āļāļēāļĢāļˆāļąāļ”āļāļēāļĢāđ€āļĢāļĩāļĒāļ™āļĢāļđāđ‰āđāļĨāļ°āļŠāļīāđ‰āļ™āļ‡āļēāļ™āļ—āļĩāđˆāļ™āļīāļŠāļīāļ•āļ„āļĢāļđāļāļĨāļļāđˆāļĄāđ€āļ›āđ‰āļēāļŦāļĄāļēāļĒāļ­āļ­āļāđāļšāļšāļ‚āļķāđ‰āļ™ āļ•āļēāļĄāđ€āļāļ“āļ‘āđŒāļāļēāļĢāļ›āļĢāļ°āđ€āļĄāļīāļ™ TPACK āļ‚āļ­āļ‡āļ™āļīāļŠāļīāļ•āļ„āļĢāļđāļ„āļ“āļīāļ•āļĻāļēāļŠāļ•āļĢāđŒ āļ‹āļķāđˆāļ‡āļĄāļĩāļāļēāļĢāļāļģāļŦāļ™āļ”āđ€āļāļ“āļ‘āđŒāļāļēāļĢāļœāđˆāļēāļ™āđƒāļ™āđāļ•āđˆāļĨāļ°āļ”āđ‰āļēāļ™āđ‚āļ”āļĒāļ„āļīāļ”āļˆāļēāļāļ„āļ°āđāļ™āļ™āđ€āļ‰āļĨāļĩāđˆāļĒāļ‚āļ­āļ‡āļ™āļīāļŠāļīāļ•āļ„āļĢāļđāļāļĨāļļāđˆāļĄāđ€āļ›āđ‰āļēāļŦāļĄāļēāļĒāļ—āļĩāđˆāļĢāđ‰āļ­āļĒāļĨāļ° 75 āļˆāļēāļāļ„āļ°āđāļ™āļ™āđ€āļ•āđ‡āļĄāđƒāļ™āđāļ•āđˆāļĨāļ°āļ”āđ‰āļēāļ™ āļœāļĨāļāļēāļĢāļ§āļīāļˆāļąāļĒāļžāļšāļ§āđˆāļē 1) āļ”āđ‰āļēāļ™āļāļēāļĢāļšāļđāļĢāļ“āļēāļāļēāļĢāļ„āļ§āļēāļĄāļĢāļđāđ‰āļ”āđ‰āļēāļ™āđ€āļ—āļ„āđ‚āļ™āđ‚āļĨāļĒāļĩāļāļąāļšāđ€āļ™āļ·āđ‰āļ­āļŦāļē (TCK) āļĄāļĩāļ„āļ°āđāļ™āļ™āđ€āļ‰āļĨāļĩāđˆāļĒāļ„āļīāļ”āđ€āļ›āđ‡āļ™āļĢāđ‰āļ­āļĒāļĨāļ° 82.83 āļ‹āļķāđˆāļ‡āļœāđˆāļēāļ™āļ•āļēāļĄāđ€āļāļ“āļ‘āđŒāļ—āļĩāđˆāļāļģāļŦāļ™āļ” 2) āļ”āđ‰āļēāļ™āļāļēāļĢāļ­āļ­āļāđāļšāļšāļāļēāļĢāļˆāļąāļ”āļāļēāļĢāđ€āļĢāļĩāļĒāļ™āļāļēāļĢāļŠāļ­āļ™ (TPACK–1) āļĄāļĩāļ„āļ°āđāļ™āļ™āđ€āļ‰āļĨāļĩāđˆāļĒāļ„āļīāļ”āđ€āļ›āđ‡āļ™āļĢāđ‰āļ­āļĒāļĨāļ° 64.88 āļ‹āļķāđˆāļ‡āđ„āļĄāđˆāļœāđˆāļēāļ™āļ•āļēāļĄāđ€āļāļ“āļ‘āđŒāļ—āļĩāđˆāļāļģāļŦāļ™āļ” āđāļĨāļ° 3) āļ”āđ‰āļēāļ™āļāļēāļĢāļ­āļ­āļāđāļšāļšāļ§āļīāļ˜āļĩāļāļēāļĢāļ§āļąāļ”āđāļĨāļ°āļ›āļĢāļ°āđ€āļĄāļīāļ™āļœāļĨāļāļēāļĢāđ€āļĢāļĩāļĒāļ™āļĢāļđāđ‰ (TPACK–2) āļĄāļĩāļ„āļ°āđāļ™āļ™āđ€āļ‰āļĨāļĩāđˆāļĒāļ„āļīāļ”āđ€āļ›āđ‡āļ™āļĢāđ‰āļ­āļĒāļĨāļ° 51.00 āļ‹āļķāđˆāļ‡āđ„āļĄāđˆāļœāđˆāļēāļ™āļ•āļēāļĄāđ€āļāļ“āļ‘āđŒāļ—āļĩāđˆāļāļģāļŦāļ™āļ” āļ„āļģāļŠāļģāļ„āļąāļ:  āļ„āļ§āļēāļĄāļĢāļđāđ‰āđƒāļ™āļāļēāļĢāļšāļđāļĢāļ“āļēāļāļēāļĢāđ€āļ—āļ„āđ‚āļ™āđ‚āļĨāļĒāļĩāļāļąāļšāļ§āļīāļ˜āļĩāļŠāļ­āļ™āđāļĨāļ°āđ€āļ™āļ·āđ‰āļ­āļŦāļē  āļ—āļĩāđāļžāļ„  āļ™āļīāļŠāļīāļ•āļ„āļĢāļđāļ„āļ“āļīāļ•āļĻāļēāļŠāļ•āļĢāđŒ   Abstract This research project aimed to study pre–service mathematics teachers’ Technological pedagogical content knowledge (TPACK) in 3 of the following categories: 1) The integration between technological knowledge and content knowledge category (TCK) 2) the designing learning activities in mathematics by using the technology category (TPACK–1) and 3) the designing measurement and evaluation in mathematics learning by using the technology category (TPACK–2). The study participants consisted of 31 fourth–year students who were enrolled in the Mathematics Education program at a university in Bangkok, Thailand. The study group was identified and selected by using purposive sampling from whom have Pedagogical Knowledge (PK), and Content Knowledge (CK). The research methods consisted of 5 processes: 1) Created the framework to evaluate pre-service mathematics teachers’ TPACK, 2) Selected the study group in this research, 3) Taught the study group for Technological Knowledge, 4) Collected the data, and 5) Analyzed the data by evaluating the pre-service mathematics teachers’ lesson plans and instruments using a mean score of 75% as the passing criteria score for each category in the pre–service mathematics teachers’ TPACK rubric. The research findings revealed that: 1) the mean score of the integration between technological knowledge and content knowledge category (TCK) was 82.83% which passed the criteria 2) the mean score of the designing learning activities in mathematics by using the technology category (TPACK–1) was 64.88% which did not pass the criteria and 3) the mean score of the designing measurement and evaluation in mathematics learning by using the technology category (TPACK–2) was 51.00% which did not pass the criteria. Keywords:  Technological pedagogical content knowledge, TPACK, Pre–service mathematics teacher

    āļāļēāļĢāļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒāđ€āļ™āļ·āđ‰āļ­āļŦāļēāļ‚āļ­āļ‡āļĢāļēāļĒāļāļēāļĢāđ‚āļ—āļĢāļ—āļąāļĻāļ™āđŒāļ—āļĩāđˆāļ™āļģāđ€āļŠāļ™āļ­āļœāđˆāļēāļ™āļ­āļ‡āļ„āđŒāļāļēāļĢāļāļĢāļ°āļˆāļēāļĒāđ€āļŠāļĩāļĒāļ‡āđāļĨāļ°āđāļžāļĢāđˆāļ āļēāļžāļŠāļēāļ˜āļēāļĢāļ“āļ°āđāļŦāđˆāļ‡āļ›āļĢāļ°āđ€āļ—āļĻāđ„āļ—āļĒ (āļŠāļ–āļēāļ™āļĩāđ‚āļ—āļĢāļ—āļąāļĻāļ™āđŒāđ„āļ—āļĒāļžāļĩāļšāļĩāđ€āļ­āļŠ) āļŠāļģāļŦāļĢāļąāļšāđƒāļŠāđ‰āļ›āļĢāļ°āļāļ­āļšāđƒāļ™āļāļēāļĢāļˆāļąāļ”āļāļēāļĢāđ€āļĢāļĩāļĒāļ™āļāļēāļĢāļŠāļ­āļ™āļ§āļīāļŠāļēāļĄāļ™āļļāļĐāļĒāđŒāļāļąāļšāļāļēāļĢāđƒāļŠāđ‰āđ€āļŦāļ•āļļāļœāļĨāđāļĨāļ°āļˆāļĢāļīāļĒāļ˜āļĢāļĢāļĄ (āļĄāļĻāļ§ 353)

    Get PDF
    (Analyzing the Contents of Thai Public  Television Programs as a Medium to Enhance General Education Teaching and Learning in the Course of “Man Reasoning and Ethics” (SWU353) Abstract   The research objective is to analyze the contents of two television programs aired on Thai Public Broadcasting Service or Thai PBS Station that are used partly for teaching the course on teaching of Man, Reasoning and Ethics subject. The sample chosen were 73 episodes of Kon Gla Fun (The Dream Chasers) and 51 episodes of Loog Mai Lai Lai Ton (Fruits of Many Trees), the two shows with relatable contents to Man, Reasoning and Ethics subject. The data are using the forms where the programs’ contents are documented and analyzed. The data analysis was done using content analysis. The research findings show that from 124 episodes of the two television programs, 118 episodes contain contents that are related to the first learning objective of Man, Reasoning, and Ethics subject where the students are expected should have a comprehensive understanding in reasoning and develop the ability to realize the values of ethics and morality in their way of lives. 8 episodes contain contents that are related to the fourth learning objective: students should have the ability to help develop others’ morals and ethics. 8 episodes contain contents that are related to the fifth learning objective, which aims for students to develop their public awareness as part of the identity being Srinakharinwirot University’s students. 4 episodes contain contents that are relatable to the third learning objective, which involves the students’ ability to select and intake information in their everyday lives with reasons and logical and critical thinking. 1 episode contains contents that are relatable to the second learning objective where students are expected to develop an open mind, a better understanding and acceptance in others’ religious and cultural differences.   Keywords: Content analysis of television programs, The use of instructional medi

    Effect of Acid-Alkaline and Thermal Pre-treatment to Cassava Pulp Feed for Batch Reactors in Optimization of Bio-Methane Yield

    Get PDF
    Cassava starch mills in Nakhon Ratchasima province operate biogas plants to generate renewable energy from surplus cassava pulp using anaerobic digestion (AD) technologies. However, the biogas yields fluctuate and digestion failure occurs due to suboptimal digester configuration and lack of understanding of the specific properties of cassava pulp substrate. This study used acid-alkaline and thermal pre-treatment to modify the cassava pulp substrate to enhance biogas yields. Concentrated 36 N sulphuric acid (H2SO4) and 20 M sodium hydroxide (NaOH) was chosen as an acid-alkaline pre-treatment to adjust to the required pH for the substrates, and 45 min at 200 ˚C for the thermal pre-treatment. Extreme pH adjusted substrates such as T1, T2, T12 and T13 required both acid and alkali in high volume, and inhibition occurred from both acid and alkali resulting in retardation of fermentation by hydrolytic bacteria, a lower volatile fatty acid to total alkalinity ratio (VFA/TA), more depletion of reducing sugars and a lower bio-methane yield. The results showed Soluble Chemical Oxygen Demand (SCOD) obtained from decomposition of lignocellulosic structure of fresh cassava pulp by combined thermal-chemical pre-treatment, was found highest in T2 which was pre-treated at pH 2 having more than 100 g L-1. Though SCOD could be enhanced by acid-alkaline pre-treatment, it led to inhibition driven by radicals of acid and alkaline. Three different mixing ratios, i.e. 3 %, 5 %, and 10 % (w/v) were compared against without pre-treated samples, and found 5 % Total Solids (TS) was most suitable after subjected to acid-alkaline pre-treatment and produced biogas yield at 4125.2 mL kg-1 TS in batch digestion for 21 d. Pre-treatment was found increase bio-methane by up to a factor of six

    Storage Fungi and Mycotoxins Associated with Rice Samples Commercialized in Thailand

    Get PDF
    The study focused on the examination of the different fungal species isolated from commercial rice samples, applying conventional culture techniques, as well as different molecular and phylogenic analyses to confirm phenotypic identification. Additionally, the mycotoxin production and contamination were analyzed using validated liquid chromatography-tandem mass spectrometry (LC-MS/MS). In total, 40 rice samples were obtained covering rice berry, red jasmine rice, brown rice, germinated brown rice, and white rice. The blotting paper technique applied on the 5 different types of rice samples detected 4285 seed-borne fungal infections (26.8%) for 16,000 rice grains. Gross morphological data revealed that 19 fungal isolates belonged to the genera Penicillium/Talaromyces (18 of 90 isolates; 20%) and Aspergillus (72 of 90 isolates; 80%). To check their morphologies, molecular data (fungal sequence-based BLAST results and a phylogenetic tree of the combined ITS, BenA, CaM, and RPB2 datasets) confirmed the initial classification. The phylogenic analysis revealed that eight isolates belonged to P. citrinum and, additionally, one isolate each belonged to P. chermesinum, A. niger, A. fumigatus, and A. tubingensis. Furthermore, four isolates of T. pinophilus and one isolate of each taxon were identified as Talaromyces ( T. radicus, T. purpureogenum, and T. islandicus). The results showed that A. niger and T. pinophilus were two commonly occurring fungal species in rice samples. After subculturing, ochratoxin A (OTA), generated by T. pinophilus code W3-04, was discovered using LC-MS/MS. In addition, the Fusarium toxin beauvericin was detected in one of the samples. Aflatoxin B1 or other mycotoxins, such as citrinin, trichothecenes, and fumonisins, were detected. These preliminary findings should provide valuable guidance for hazard analysis critical control point concepts used by commercial food suppliers, including the analysis of multiple mycotoxins. Based on the current findings, mycotoxin analyses should focus on A. niger toxins, including OTA and metabolites of T. pinophilus (recently considered a producer of emerging mycotoxins) to exclude health hazards related to the traditionally high consumption of rice by Thai people

    Acetic Acid as a Carbon Source from Fermentation of Biogas Excess Sludge for the Removal of Nutrients in Enhanced Biological Phosphorus Removal Processes

    Get PDF
    āļŠāļēāļĢāļ­āļīāļ™āļ—āļĢāļĩāļĒāđŒāļ„āļēāļĢāđŒāļšāļ­āļ™ āđ„āļ™āđ‚āļ•āļĢāđ€āļˆāļ™ āđāļĨāļ°āļŸāļ­āļŠāļŸāļ­āļĢāļąāļŠāđƒāļ™āļ™āđ‰āļģāđ€āļŠāļĩāļĒāđ€āļ›āđ‡āļ™āļ›āļąāļāļŦāļēāļĄāļĨāļžāļīāļĐāļ—āļēāļ‡āļ™āđ‰āļģāļ—āļĩāđˆāļŠāļģāļ„āļąāļ āļ‹āļķāđˆāļ‡āļāļēāļĢāļ„āļ§āļšāļ„āļļāļĄāļĢāļ°āļšāļšāļāļģāļˆāļąāļ”āļŸāļ­āļŠāļŸāļ­āļĢāļąāļŠāļ—āļēāļ‡āļŠāļĩāļ§āļ āļēāļžāđāļšāļšāđ€āļžāļīāđˆāļĄāļžāļđāļ™āļˆāļģāđ€āļ›āđ‡āļ™āļ•āđ‰āļ­āļ‡āļĄāļĩāļāļēāļĢāđ€āļ•āļīāļĄāđāļŦāļĨāđˆāļ‡āļ„āļēāļĢāđŒāļšāļ­āļ™āļˆāļēāļāļ āļēāļĒāļ™āļ­āļ āđāļĨāļ°āļŠāļēāļĢāđ€āļ„āļĄāļĩāļ—āļĩāđˆāđ€āļ›āđ‡āļ™āļ”āđˆāļēāļ‡ āļ—āļģāđƒāļŦāđ‰āđ€āļŠāļĩāļĒāļ„āđˆāļēāđƒāļŠāđ‰āļˆāđˆāļēāļĒāđƒāļ™āļāļēāļĢāļ‹āļ·āđ‰āļ­āļŠāļēāļĢāđ€āļ„āļĄāļĩāđ€āļžāļīāđˆāļĄāļ‚āļķāđ‰āļ™ āļ”āļąāļ‡āļ™āļąāđ‰āļ™āļ‡āļēāļ™āļ§āļīāļˆāļąāļĒāļ™āļĩāđ‰āļˆāļķāļ‡āļĄāļļāđˆāļ‡āļĻāļķāļāļĐāļēāļ–āļķāļ‡āļāļēāļĢāļāļģāļˆāļąāļ”āļŸāļ­āļŠāļŸāļ­āļĢāļąāļŠ āđ„āļ™āđ‚āļ•āļĢāđ€āļˆāļ™ āđāļĨāļ°āļ‹āļĩāđ‚āļ­āļ”āļĩāđƒāļ™āļĢāļ°āļšāļšāļāļģāļˆāļąāļ”āļŸāļ­āļŠāļŸāļ­āļĢāļąāļŠāļ—āļēāļ‡āļŠāļĩāļ§āļ āļēāļžāļ‚āļ­āļ‡āļĢāļ°āļšāļšāļšāļģāļšāļąāļ”āļ™āđ‰āļģāđ€āļŠāļĩāļĒāļŠāļļāļĄāļŠāļ™ āđ‚āļ”āļĒāļ—āļ”āļĨāļ­āļ‡āđ€āļ•āļīāļĄāļāļĢāļ”āđāļ­āļ‹āļĩāļ•āļīāļāļ—āļĩāđˆāđ„āļ”āđ‰āļˆāļēāļāļāļēāļĢāļŦāļĄāļąāļāļ•āļ°āļāļ­āļ™āļŠāđˆāļ§āļ™āđ€āļāļīāļ™āļ‚āļ­āļ‡āļĢāļ°āļšāļšāļœāļĨāļīāļ•āļāđŠāļēāļ‹āļŠāļĩāļ§āļ āļēāļž āđāļĨāļ°āļ„āļ§āļšāļ„āļļāļĄāļ„āļ§āļēāļĄāđ€āļ›āđ‡āļ™āļ”āđˆāļēāļ‡āļˆāļēāļāļāļēāļĢāđ€āļ•āļīāļĄāļĄāļđāļĨāļŠāļļāļāļĢ āđāļĨāļ°āđ‚āļ‹āđ€āļ”āļĩāļĒāļĄāđ„āļšāļ„āļēāļĢāđŒāļšāļ­āđ€āļ™āļ•āļ—āļĩāđˆāļŠāļąāļ”āļŠāđˆāļ§āļ™āđ€āļ—āđˆāļēāļāļąāļš 2 : 1 āļāļģāļŦāļ™āļ”āđƒāļŦāđ‰āļ„āđˆāļēāļŸāļ­āļŠāļŸāļ­āļĢāļąāļŠāđ€āļ—āđˆāļēāļāļąāļš 25 āļĄāļ./āļĨ. āđ„āļ™āđ‚āļ•āļĢāđ€āļˆāļ™āđƒāļ™āļĢāļđāļ›āļ‚āļ­āļ‡āļ—āļĩāđ€āļ„āđ€āļ­āļ™āđ€āļ—āđˆāļēāļāļąāļš 15 āļĄāļ./āļĨ. āđāļĨāļ°āļ‹āļĩāđ‚āļ­āļ”āļĩ (āļāļĢāļ”āđāļ­āļ‹āļĩāļ•āļīāļāļ—āļĩāđˆāđ„āļ”āđ‰āļˆāļēāļāļāļēāļĢāļŦāļĄāļąāļāļ•āļ°āļāļ­āļ™āļŠāđˆāļ§āļ™āđ€āļāļīāļ™āđāļšāļšāđ„āļĢāđ‰āļ­āļ­āļāļ‹āļīāđ€āļˆāļ™) āđ€āļ—āđˆāļēāļāļąāļš 380 āļĄāļ./āļĨ. āļ­āļēāļĒāļļāļ•āļ°āļāļ­āļ™āđ€āļ—āđˆāļēāļāļąāļš 60 āļ§āļąāļ™ āļœāļĨāļāļēāļĢāļ—āļ”āļĨāļ­āļ‡āđ€āļĄāļ·āđˆāļ­āđƒāļŠāđ‰āđāļŦāļĨāđˆāļ‡āļ„āļēāļĢāđŒāļšāļ­āļ™āļˆāļēāļāļāļēāļĢāļŦāļĄāļąāļāļ•āļ°āļāļ­āļ™āļŠāđˆāļ§āļ™āđ€āļāļīāļ™āđāļšāļšāđ„āļĢāđ‰āļ­āļ­āļāļ‹āļīāđ€āļˆāļ™āļžāļšāļ§āđˆāļē āđ€āļĄāļ·āđˆāļ­āđ€āļ”āļīāļ™āļĢāļ°āļšāļšāļˆāļ™āđ€āļ‚āđ‰āļēāļŠāļđāđˆāļŠāļ āļēāļ§āļ°āļ„āļ‡āļ—āļĩāđˆ (91 āļ§āļąāļ™) āļāļēāļĢāļāļģāļˆāļąāļ”āļŸāļ­āļŠāļŸāļ­āļĢāļąāļŠ āđ„āļ™āđ‚āļ•āļĢāđ€āļˆāļ™ āđāļĨāļ°āļŠāļēāļĢāļ­āļīāļ™āļ—āļĢāļĩāļĒāđŒāļ„āļēāļĢāđŒāļšāļ­āļ™āļĄāļĩāđāļ™āļ§āđ‚āļ™āđ‰āļĄāđ€āļžāļīāđˆāļĄāļŠāļđāļ‡āļ‚āļķāđ‰āļ™ (āļĢāđ‰āļ­āļĒāļĨāļ° 6.92, 20.72 āđāļĨāļ° 0.74) āđ€āļĄāļ·āđˆāļ­āđ€āļ—āļĩāļĒāļšāļāļąāļšāļĢāļ°āļšāļšāļ—āļĩāđˆāđƒāļŠāđ‰āļĄāļđāļĨāļŠāļļāļāļĢāļ­āļĒāđˆāļēāļ‡āđ€āļ”āļĩāļĒāļ§āđƒāļ™āļāļēāļĢāļ„āļ§āļšāļ„āļļāļĄāļ„āļ§āļēāļĄāđ€āļ›āđ‡āļ™āļ”āđˆāļēāļ‡ āļ‹āļķāđˆāļ‡āļˆāļēāļāļāļēāļĢāļ—āļģāļŠāļĄāļ”āļļāļĨāļĄāļ§āļĨāļžāļšāļ§āđˆāļē āļĄāļĩāļ›āļĢāļīāļĄāļēāļ“āļ‚āļ­āļ‡āļŸāļ­āļŠāļŸāļ­āļĢāļąāļŠāļ—āļĩāđˆāļŠāļ°āļŠāļĄāđƒāļ™āđ€āļ‹āļĨāļĨāđŒāļˆāļļāļĨāļīāļ™āļ—āļĢāļĩāļĒāđŒāļĢāđ‰āļ­āļĒāļĨāļ° 52.32 āđāļŠāļ”āļ‡āļ§āđˆāļēāļ›āļĢāļīāļĄāļēāļ“āļāļĢāļ”āđāļ­āļ‹āļĩāļ•āļīāļāļˆāļēāļāļāļēāļĢāļŦāļĄāļąāļāļ•āļ°āļāļ­āļ™āļŠāđˆāļ§āļ™āđ€āļāļīāļ™āļ‚āļ­āļ‡āļĢāļ°āļšāļšāļœāļĨāļīāļ•āļāđŠāļēāļ‹āļŠāļĩāļ§āļ āļēāļžāļŠāļēāļĄāļēāļĢāļ–āđƒāļŠāđ‰āļ—āļ”āđāļ—āļ™āļāļĢāļ”āđāļ­āļ‹āļĩāļ•āļīāļāļˆāļēāļāļŠāļēāļĢāđ€āļ„āļĄāļĩ āļ‹āļķāđˆāļ‡āļŠāļēāļĄāļēāļĢāļ–āļ™āļģāļĄāļēāđƒāļŠāđ‰āđ€āļ›āđ‡āļ™āđāļ™āļ§āļ—āļēāļ‡āđƒāļ™āļāļēāļĢāļ„āļ§āļšāļ„āļļāļĄāļĢāļ°āļšāļšāļšāļģāļšāļąāļ”āļ™āđ‰āļģāđ€āļŠāļĩāļĒāļŠāļļāļĄāļŠāļ™ āđāļĨāļ°āļŠāđˆāļ§āļĒāļĨāļ”āļ•āđ‰āļ™āļ—āļļāļ™āļāļēāļĢāđ€āļ”āļīāļ™āļĢāļ°āļšāļšāđ„āļ”āđ‰High level of organic carbon, nitrogen, and phosphorus are serious wastewater problems. The control of enhanced biological phosphorus removal processes requires the addition of external carbon sources and alkaline chemicals that can increase the cost of additional chemicals. This research aims to study the efficiency of phosphorus nitrogen and COD in enhanced biological phosphorus removal of municipal wastewater treatment plant. Acetic acid from fermented excess sludge of biogas processes was used as carbon source with controlled alkaline by pig manure and sodium bicarbonate at ratio 2 : 1 in the EBPR. In the experiments, 25 mg/L of phosphorus and 380 mg/L of COD were used with 60 days of sludge retention time. The results showed a steady state after 91 days. The phosphorus, nitrogen and carbon removal has tended to increase by 6.92, 20.72 and 0.74 percent compared to the systems that use only pig manure to control the alkalinity. Mass balance showed that phosphorus in cell was 52.32%. The EBPR process is able to use acetic acid from the fermented excess sludge from biogas processes as the substitutes of the chemicals. Therefore, the mass balance is potential to be a guideline for controlling the municipal wastewater treatment system and reduce the operational cost

    āļāļēāļĢāđ€āļžāļīāđˆāļĄāļ›āļĢāļīāļĄāļēāļ“āļĄāļĩāđ€āļ—āļ™āļˆāļēāļāļāļēāļāļĄāļąāļ™āļŠāļģāļ›āļ°āļŦāļĨāļąāļ‡ āļ”āđ‰āļ§āļĒāļāļĢāļ°āļšāļ§āļ™āļāļēāļĢāļĒāđˆāļ­āļĒāļŠāļĨāļēāļĒāļ”āđ‰āļ§āļĒāļŠāļēāļĢāļ”āđˆāļēāļ‡āđāļĨāļ°āļ„āļ§āļēāļĄāļĢāđ‰āļ­āļ™āļĢāđˆāļ§āļĄāļāļąāļšāđ€āļĻāļĐāđ€āļŦāļĨāđ‡āļEnhanced Methane Production from Cassava Pulp by Using Alkaline Hydrolysis and Heat with Scraps Iron

    No full text
    āļāļēāļĢāđ€āļžāļīāđˆāļĄāļ›āļĢāļīāļĄāļēāļ“āļĄāļĩāđ€āļ—āļ™ (CH4) āļˆāļēāļāļāļēāļāļĄāļąāļ™āļŠāļģāļ›āļ°āļŦāļĨāļąāļ‡ āđ€āļāļīāļ”āļ‚āļķāđ‰āļ™āđ€āļĄāļ·āđˆāļ­āļ—āļģāļĨāļēāļĒ āđ€āļ‹āļĨāļĨāļđāđ‚āļĨāļŠ āđ€āļŪāļĄāļīāđ€āļ‹āļĨāļĨāļđāđ‚āļĨāļŠ āđāļĨāļ°āļĨāļīāļāļ™āļīāļ™ āļ‡āļēāļ™āļ§āļīāļˆāļąāļĒāļ™āļĩāđ‰āđƒāļŠāđ‰āļāļĢāļ°āļšāļ§āļ™āļāļēāļĢāļĒāđˆāļ­āļĒāļŠāļĨāļēāļĒāļ”āđ‰āļ§āļĒāļ”āđˆāļēāļ‡ (Alkaline Hydrolysis) āđāļĨāļ°āļ„āļ§āļēāļĄāļĢāđ‰āļ­āļ™āļĢāđˆāļ§āļĄāļāļąāļšāđ€āļĻāļĐāđ€āļŦāļĨāđ‡āļ (Scrap Iron) āļ„āļ§āļēāļĄāđ€āļ‚āđ‰āļĄāļ‚āđ‰āļ™ 50 āļ.āđ€āļĻāļĐāđ€āļŦāļĨāđ‡āļ/āļāļ. āļ‚āļ­āļ‡āļ‚āļ­āļ‡āđāļ‚āđ‡āļ‡āļĢāļ°āđ€āļŦāļĒāđ„āļ”āđ‰āļ—āļąāđ‰āļ‡āļŦāļĄāļ” āļĢāļ°āļĒāļ°āđ€āļ§āļĨāļēāđ€āļāđ‡āļšāļāļąāļ (HRT) 20 āļ§āļąāļ™ āļ”āļģāđ€āļ™āļīāļ™āļāļēāļĢāļ—āļ”āļĨāļ­āļ‡āđāļšāļšāļāļķāđˆāļ‡āļ•āđˆāļ­āđ€āļ™āļ·āđˆāļ­āļ‡āđƒāļ™āļ–āļąāļ‡āļāļ§āļ™āļŠāļĄāļšāļđāļĢāļ“āđŒ āļˆāļģāļ™āļ§āļ™āļ—āļąāđ‰āļ‡āļŠāļīāđ‰āļ™ 3 āļŠāļ āļēāļ§āļ° (Con.) āļ„āļ·āļ­ Con. 1 āļ›āļĢāļąāļš pH āļāļēāļāļĄāļąāļ™āļŠāļģāļ›āļ°āļŦāļĨāļąāļ‡āđ€āļ›āđ‡āļ™ 7 Con. 2 āđƒāļŠāđ‰ Alkaline Hydrolysis āļĢāđˆāļ§āļĄāļāļąāļšāļ„āļ§āļēāļĄāļĢāđ‰āļ­āļ™ āļ›āļĢāļąāļš pH 10 āļ„āļ§āļšāļ„āļļāļĄāļ­āļļāļ“āļŦāļ āļđāļĄāļī 100 āļ­āļ‡āļĻāļēāđ€āļ‹āļĨāđ€āļ‹āļĩāļĒāļŠ āļĢāļ°āļĒāļ°āđ€āļ§āļĨāļē 30 āļ™āļēāļ—āļĩ āđāļĨāļ° Con. 3 āļ„āļ§āļšāļ„āļļāļĄāļāļēāļĢāļ—āļ”āļĨāļ­āļ‡āđ€āļŦāļĄāļ·āļ­āļ™ Con. 2 āđāļĨāļ°āđ€āļ•āļīāļĄ Scrap Iron āļ—āļĩāđˆ Con. 3 āļ›āļĢāļīāļĄāļēāļ“ CH4 āļĄāļĩāļ„āđˆāļēāļŠāļđāļ‡āļŠāļļāļ” 0.90 āļĨāļš.āļĄ. āļĄāļĩāđ€āļ—āļ™/āļāļ. āļ‚āļ­āļ‡āļ‚āļ­āļ‡āđāļ‚āđ‡āļ‡āļĢāļ°āđ€āļŦāļĒāđ„āļ”āđ‰āļ—āļąāđ‰āļ‡āļŦāļĄāļ”āđ€āļžāļīāđˆāļĄāļ‚āļķāđ‰āļ™ 2.00 āđ€āļ—āđˆāļēāļ‚āļ­āļ‡ Con. 1 āđāļĨāļ°āđ€āļžāļīāđˆāļĄāļ‚āļķāđ‰āļ™ 1.55 āđ€āļ—āđˆāļēāļ‚āļ­āļ‡ Con. 2 āđ€āļĄāļ·āđˆāļ­āļŠāļīāđ‰āļ™āļŠāļļāļ”āļāļēāļĢāļ—āļ”āļĨāļ­āļ‡ Scrap Iron āļ­āļĒāļđāđˆāđƒāļ™āļĢāļđāļ› Fe2+ 15.90% āđāļĨāļ° Fe3+ 84.10% (āļ­āļĒāļđāđˆāđƒāļ™āļĢāļđāļ› Fe3C āļŠāļđāļ‡āļ—āļĩāđˆāļŠāļļāļ”) āđ€āļ™āļ·āđˆāļ­āļ‡āļˆāļēāļāļˆāļļāļĨāļīāļ™āļ—āļĢāļĩāļĒāđŒāļ™āļģāļ­āļīāđ€āļĨāđ‡āļāļ•āļĢāļ­āļ™āļ‚āļ­āļ‡āđ€āļŦāļĨāđ‡āļ (Fe2+) āđ„āļ›āđƒāļŠāđ‰āļĄāļĩāļœāļĨāļ•āđˆāļ­āļāļēāļĢāļĨāļ”āļĨāļ‡āļ‚āļ­āļ‡āļ„āļēāļĢāđŒāļšāļ­āļ™āđ„āļ”āļ­āļ­āļāđ„āļ‹āļ”āđŒ (CO2) āđāļĨāļ°āđ„āļŪāđ‚āļ”āļĢāđ€āļˆāļ™āļ‹āļąāļĨāđ„āļŸāļĨāđŒ (H2S) āļŠāđˆāļ‡āļœāļĨāļ—āļģāđƒāļŦāđ‰āđ€āļāļīāļ” CH4 āđ€āļžāļīāđˆāļĄāļĄāļēāļāļ‚āļķāđ‰āļ™ āđ€āļĄāļ·āđˆāļ­āļžāļīāļˆāļēāļĢāļ“āļēāļ›āļĢāļīāļĄāļēāļ“ CH4 āđƒāļ™ Con. 3 āļĄāļĩāļ„āđˆāļēāđāļ•āļāļ•āđˆāļēāļ‡āļ­āļĒāđˆāļēāļ‡āļĄāļĩāļ™āļąāļĒāļŠāļģāļ„āļąāļ (Îą < 0.05) āļ—āļĩāđˆāļĢāļ°āļ”āļąāļšāļ„āļ§āļēāļĄāđ€āļŠāļ·āđˆāļ­āļĄāļąāđˆāļ™ 95% āđ€āļĄāļ·āđˆāļ­āđ€āļ›āļĢāļĩāļĒāļšāđ€āļ—āļĩāļĒāļšāļāļąāļš Con. 1 āđāļĨāļ° Con. 2 āļ—āļ”āļŠāļ­āļšāļŠāļ–āļīāļ•āļī One-Way ANOVA : Post-hoc Tukey āļ‡āļēāļ™āļ§āļīāļˆāļąāļĒāļ™āļĩāđ‰āļŠāļēāļĄāļēāļĢāļ–āļ›āļĢāļ°āļĒāļļāļāļ•āđŒāđƒāļŠāđ‰āļāļąāļšāļ­āļļāļ•āļŠāļēāļŦāļāļĢāļĢāļĄāļāđŠāļēāļ‹āļŠāļĩāļ§āļ āļēāļžāļ—āļĩāđˆāđ€āļāļīāļ”āļāļēāļĢāļ–āđˆāļēāļĒāđ€āļ—āļžāļĨāļąāļ‡āļ‡āļēāļ™āļ„āļ§āļēāļĄāļĢāđ‰āļ­āļ™āđ€āļāļīāļ”āļ‚āļķāđ‰āļ™āļ‚āļ“āļ°āļ—āļĩāđˆāđ€āļ„āļĢāļ·āđˆāļ­āļ‡āļœāļĨāļīāļ•āđ„āļŸāļŸāđ‰āļēāļˆāļēāļāļāđŠāļēāļ‹āļŠāļĩāļ§āļ āļēāļžāļ—āļģāļ‡āļēāļ™ āđƒāļŠāđ‰āļĢāđˆāļ§āļĄāļāļąāļš Scrap Iron āļ‹āļķāđˆāļ‡āđ€āļ›āđ‡āļ™āļ§āļąāļŠāļ”āļļāđ€āļŦāļĨāļ·āļ­āļ—āļīāđ‰āļ‡āļˆāļēāļāļ­āļļāļ•āļŠāļēāļŦāļāļĢāļĢāļĄāđ€āļ„āļĢāļ·āđˆāļ­āļ‡āļˆāļąāļāļĢāļāļĨāļĄāļēāđƒāļŠāđ‰āļ›āļĢāļ°āđ‚āļĒāļŠāļ™āđŒ āđƒāļ™āļāļĢāļ“āļĩāļ—āļĩāđˆāđ„āļĄāđˆāļĄāļĩāļ„āļ§āļēāļĄāļĢāđ‰āļ­āļ™āđ€āļŦāļĨāļ·āļ­āļ—āļīāđ‰āļ‡āđāļĨāļ° Scrap Iron āđ„āļĄāđˆāļˆāļģāđ€āļ›āđ‡āļ™āļ•āđ‰āļ­āļ‡āđƒāļŠāđ‰āļāļĢāļ°āļšāļ§āļ™āļāļēāļĢāļĒāđˆāļ­āļĒāļŠāļĨāļēāļĒāđāļšāļš Alkaline Hydrolysis āļĢāđˆāļ§āļĄāļāļąāļšāļ„āļ§āļēāļĄāļĢāđ‰āļ­āļ™ āđ€āļ™āļ·āđˆāļ­āļ‡āļˆāļēāļāđ€āļĄāļ·āđˆāļ­āđ€āļ›āļĢāļĩāļĒāļšāđ€āļ—āļĩāļĒāļš CH4 āđƒāļ™ Con. 1 āđāļĨāļ° Con. 2 āļĄāļĩāļ„āđˆāļēāđ„āļĄāđˆāđāļ•āļāļ•āđˆāļēāļ‡āļāļąāļ™ āđ€āļĄāļ·āđˆāļ­āļ—āļ”āļŠāļ­āļšāļŠāļ–āļīāļ•āļī Pair t-test āļ—āļĩāđˆāļĢāļ°āļ”āļąāļšāļ„āļ§āļēāļĄāđ€āļŠāļ·āđˆāļ­āļĄāļąāđˆāļ™ 95%Methane (CH4) production from cassava pulp can be increased when cellulose, hemicellulose, and lignin are optimally degraded. In this study, alkaline hydrolysis and heat combined with scrap iron at a concentration of 50 g Scrap iron/kg TVS were processed in Hydraulic Retention Time (HRT) of 20 days. Semi-continuous experiments were conducted in a completely stirred tank reactor in 3 conditions (Con.). In Con. 1, the pH of cassava waste was adjusted to 7. In Con. 2, pH 10 cassava waste was used in alkaline hydrolysis with heat at the controlled temperature of 100 degrees Celsius for 30 minutes. Con. 3 was like Con. 2 with additional scrap iron. CH4 content had a maximum value of 0.90 m3 CH4/kg TVS in Con. 3, increasing by 2.00 times from Con. 1 and 1.55 times from Con. 2. After experiments, scrap iron was found in the form of Fe2+ (15.90 %) and Fe3+ (84.10 %) (the highest in the form of Fe3C) because when the microbes used iron electrons (Fe2+), they reduced carbon dioxide (CO2) and hydrogen sulfide (H2S) and caused the increase of CH4. When considering the amount of CH4 in Con. 3, there were significant differences (Îą <0.05) at a 95% confidence level compared with Con. 1 and Con. 2 using One-Way ANOVA : Post-hoc Tukey. This result can be applied to the biogas industries in which heat transfer energy occurs when the biogas power generator works simultaneously with scrap iron, waste material from the machinery industry. In the absence of waste heat and scrap iron, it is not necessary to use Alkaline hydrolysis with heat because when comparing CH4 in Con. 1 and Con. 2, there was no significant difference in the Pair t-test at a 95% confidence level

    Combination of Alkaline and Heat Pretreatments with Zero-Valent Iron Application in Cassava Pulp and Wastewater for Methane Generation: Development from Batch to Continuous Systems

    No full text
    Pretreatment with the addition of metals to anaerobic digestion in biogas production is crucial to address improper degradation of organic compounds with low methane production. Biogas production from a combination of cassava pulp and cassava wastewater in the batch system under the variation of alkaline and heat conditions as a pretreatment was investigated with the zero-valent iron (ZVI) addition after the pretreatment. It was found that alkaline pretreatment at pH 10 with the heat at 100 °C for 30 min combined with 50 g of ZVI kg of TVS−1 showed the highest methane production up to 4.18 m3 CH4 kg TVS−1. Nevertheless, chemical oxygen demand (COD) and volatile fatty acid (VFA) removals were slightly reduced when ZVI was added to the system. Furthermore, application in the continuous system showed increased COD and VFA removals after applying alkaline and heat pretreatments. On the other hand, additional ZVI in the substrate after the pretreatments in the continuous system increased the methane production from 0.58 to 0.90 and 0.19 to 0.24 of CH4 m3 kg TVS−1 in 20 and 60 days of hydraulic retention times (HRTs), respectively. Thus, a suitable combination of alkaline and heat pretreatments with ZVI is essential for increasing methane production in batch and continuous systems

    Combination of Alkaline and Heat Pretreatments with Zero-Valent Iron Application in Cassava Pulp and Wastewater for Methane Generation: Development from Batch to Continuous Systems

    No full text
    Pretreatment with the addition of metals to anaerobic digestion in biogas production is crucial to address improper degradation of organic compounds with low methane production. Biogas production from a combination of cassava pulp and cassava wastewater in the batch system under the variation of alkaline and heat conditions as a pretreatment was investigated with the zero-valent iron (ZVI) addition after the pretreatment. It was found that alkaline pretreatment at pH 10 with the heat at 100 °C for 30 min combined with 50 g of ZVI kg of TVS−1 showed the highest methane production up to 4.18 m3 CH4 kg TVS−1. Nevertheless, chemical oxygen demand (COD) and volatile fatty acid (VFA) removals were slightly reduced when ZVI was added to the system. Furthermore, application in the continuous system showed increased COD and VFA removals after applying alkaline and heat pretreatments. On the other hand, additional ZVI in the substrate after the pretreatments in the continuous system increased the methane production from 0.58 to 0.90 and 0.19 to 0.24 of CH4 m3 kg TVS−1 in 20 and 60 days of hydraulic retention times (HRTs), respectively. Thus, a suitable combination of alkaline and heat pretreatments with ZVI is essential for increasing methane production in batch and continuous systems
    corecore