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Abstract. Combination of suitable algae species with wastewater condition is important to 
achieve high productivity of algae with remarkable removal of contaminants. However, the 
usage of algae in treating wastewater has not yet to show sufficient removal efficiency 
when the biomass productivity is extremely enhanced. This review aims to scrutinize and 
discuss: (1) several promising species for this coupling method; (2) main wastewater 
characteristics related to the microalgae biomass production and their removal efficiency; 
(3) metal occurrences and other biotic factors; and (4) constraint of microalgae biomass 
production and wastewater treatment process. Microalgae such as Chlorella, Spirulina and 
Scenedesmus are among the most utilized microalgae because of their utilities. Chemical 
oxygen demand (COD) total nitrogen (TN), and total phosphorous (TP) concentrations 
affect biomass yield of algae cultivation. Metals occurrences, light intensity and carbon 
dioxide availability play an important role in process of algae cultivation with diverse 
optimum levels of each factor. Sufficient but not excess concentration of N and P solely 
for building biomass and other metabolism activities, mixotrophic condition for algae to 
digest organic carbon, and heavy metals defense mechanisms are expected to address 
constraint of biomass generation demand and wastewater treatment efficiency. 
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1. Introduction 
The coverage of microalgae’s distribution and 

recognition of aquatic ecosystems has enable application 
based on this ability to extend in many ways [1]. Algae 
are cultivated in liquid containing nutrients with other 
factors needed for the growth. Some of them are 
cultivated in the wastewater for nutrient removal and 
production of microalgae biomass [2]. Microalgae 
biomass is further processed for many utilizations such 
as food stock, animal feed, fertilizer, and biofuel [3]. 
Among these utilizations, wastewater treatment along 
with biofuel production have emerged the algae as the 
commodity which within 10-15 years are expected to be 
the most promising feedstock for counteract the rise of 
fuel consumption [4]. This application has potential not 
only for water treatment process but also for producing 
microalgae biomass and conversion of CO2 to O2. 
However, there are still many factors that need to be 
enhanced as well as the drawback of this application 
before this utilization can be completely adapted in 
industrial scale. 

Wastewater treatment focuses on processing 
wastewater to certain extent for safe disposal into 
environment [5]. The contaminants such as nutrients in 
the form of nitrogen (N), organic matter (OM), and 
phosphorous (P) which is known to be difficult to 
remove from the wastewater. Several advanced 
treatments have been reported to successfully remove 
these contaminants using chemical and physical based 
treatments, yet the cost of both technologies are still 
considered expensive. Moreover, the application of 
chemical and physical treatments is not able to produce 
any beneficial by-product. 

The nutrients in wastewater is giving the chance for 
microalgae to grow as it is necessary to build biomass 
and support other metabolism processes of the algae 
cells [6]. In some of the traditional algae cultivation, 
artificial nutrients are commonly added into the water 
medium. This method is usually conducted in food-
purposed algae biomass. However, for other applications 
algae free-contamination medium is not necessary since 
the nutrients shall be purchased. Cultivation of algae in 
wastewater can counteract high demands of nutrient for 
biomass generation. Moreover, the algae also can absorb 
the nutrient and other undesired contaminant in the 
water such as toxic in the wastewater [7]. The wastewater 
contents are able to be considered as nutrient for algae to 
grow. 

Algae utilization in wastewater treatment and algal 
biomass generation has two main factors to consider. 
Algae species and wastewater characteristics need to be 
carefully considered in order to build effective and 
efficient coupling system. Algae niche and effective 
removal of substances in the wastewater needs to be 
deliberated. Niche of algae usually lies in lower than 
actual concentration of municipal and industrial 
wastewater characteristics. Most of recent studies were 
conducted to address either removal of wastewater 
nutrient or condition where algae can achieve high 

concentration in wastewater [8]. Nevertheless, it is 
important to understand and identify the optimum 
condition for algae cultivation and water treatment to run 
the coupling concept. It is expected that optimum 
condition of wastewater and the proper algae species are 
able to reach high density of biomass in short period 
while the wastewater characteristics can meet the 
requirements to be disposed. In this review, several most 
used algae species in wastewater are summarized and 
discussed in order to describe the difference between 
each species and strain. Wastewater characteristics, metal 
contamination, and other abiotic factors which affected 
the algae are further scrutinized to meet the niche of 
algae. The constrains between high biomass yield and 
optimum removal of the coupling are also addressed. 
 

2. Microalgae Species for Biomass Generation 
Microalgae can be described as photosynthetic 

microorganisms with the ability to survive and grow in 
lack of nutrient present because of their cellular 
morphology [1]. Microalgae can be found in the cool 
ecosystem with temperatures below the freezing point, 
absence of sunlight in some period every year and 
continuous exposure of light and UV in another period 
[9]. The ability to grow in different condition is also 
supported by the wide range of the species occurred in 
each condition. Microalgae can thus be classified by the 
environment that algae need to grow properly. 

Green microalgae are usually referred as rich-oil 
biomass algae. Since microalgae are usually able to be 
isolated from the freshwater around the world, some 
studies have isolated the green microalgae near by the 
wastewater or other medium source before using that 
medium to cultivate that algae. Nevertheless, other 
advantages of algae biomass are not limited into the 
energy generation. Some other advantages of algae 
biomass include food [8] and cosmetics [10]. However, in 
these applications, wastewater is rarely used as the 
medium due to the safety and standard consideration.  

Cultivation of biomass of algae for biodiesel 
production emphasizes on lipid content in the biomass. 
Production of biofuel such as biodiesel needs specific 
fatty acid content of the total oil for transesterification 
process in order to produce fatty acid methyl ester 
(FAME) product [11]. FAME is referred to be the 
biodiesel content which can be applied into the diesel 
engine of which the process to generate FAME involves 
alcohol displacement from ester group by another 
alcohol or usually called alcoholysis [12]. The oil content 
per total biomass products is a key to determine the 
proper algae species to use and its maximum biomass for 
biodiesel generation [13].  

Numerous algae have been isolated and identified for 
many purposes including production of biomass in large 
scale. Specific purpose of microalgae and the medium 
used in the cultivation process are among the main 
consideration of screening process. For biofuel 
generation purpose, cell density, growth rate and 
tolerance of wide range environmental changes are 
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usually occupied to screen the potential microalgae [3]. 
Moreover, metabolites of the algae including lipid 
content are crucial to be considered for obtaining the 
high amount of biomass. Chlorella, Spirulina, and 
Scenedesmus are among the most cultivated algae in order 
to obtain high biomass productivity with considerably 
high percentage of lipid (Table 1). 

 
Table 1. Biomass yield with fatty acid percentage of 
several green microalgae. 
 

Microalgae Biomass 

(g/L) 

Lipid 

content 

(%) 

Ref 

Chlorella sp. 1.7 13.7 [14] 

Chlorella sp. 1.1 11 [13] 

C. protothecoides 24.01  34 [15] 

C. pyrenoidosa 0.73 59 [16] 

C. sorokiniana 11 38 [17] 

C. minutissima 0.97 37 [18] 

Spirulina maxima 0.8 7.30 [19] 

S. platensis 0.6 7.24 

S. platensis 0.8 13.70 [20] 

Spirulina sp. .3 60.13 [21] 

Scenedesmus acutus 0.9 30.4 [22] 

S. dimorphus 2.5 24.7 [23] 

S. abundans 1.1 44 [24] 

Desmodesmus spp. - 58 [25] 

Desmodesmus sp. 0.73 12.9 [26] 

D. communis 1.23 19.0 [27] 

Chlamydomonas sp. 4.15 19.4 [28] 

C. reinhardtii - 50 [29] 

C. reinhardtii 0.73 18.8 [30] 

 

2.1. Chlorella 
Chlorella is one of the microalgae which is most likely 

to be found in the freshwater ecosystem since it 
moderately tolerates organic pollutants in the water [31]. 
However, it still manages to produce high amount of 
biomass with up to 59 % lipid content (Table 1). 
Showing the wide range of tolerance is also the part of 
consideration for using Chlorella as the inoculate alga. 
Utilization of these algae extends from freshwater to 
seawater environment [32] with promising yield of 
biomass. The advantages of these microalgae are the 
well-known strain and conditions that allow the better 
design of reactor and pick the suitable substrates.  

Algae were also found in mixotropic condition 
(autotroph and heterotroph state) of which the 
consumption of organic matter in the wastewater is 
possible to reach noticeable amount. A study of Mu, Li 
[15] showed an incredible number of biomass (24.01 g L-

1) using sugarcane bagasse hydrolysate for mixotropic C. 
protothecoides. The sustainability of this mixotrophic alga is 
also potential be utilized in the wastewater treatment 
system since high carbon content is detected in 
wastewaters and it has been proven that mixotrophic 
culture can reach high removal of organic carbon, total 

nitrogen, and total phosphorous [33]. With consumption 
of organic matters up to 82.02 % in the medium, this 
study also proved that it is possible that this alga to apply 
in the open pond wastewater treatment. However, it is 
important to note that in the high initial concentration 
the removal rate the residual or recovered organic matter 
can occur above threshold level. This situation leads to 
the additional water processes in the system with even 
higher removal cost. Industrial species C. sorokiniana in 
the mixotrophic cultivation using wine waste as organic 
carbon source has been reported to improve specific 

growth rate (0.052 h-1) and biomass 11 g L-1 [17]. The 
high yield using mixotropic culture is important and has 
emerged the possibility to reach certain condition where 
high yield and removal efficiency can be achieved. 

Through wild strains and isolated Chlorella are simply 
cultivated for generating biomass of this species, some 
advanced approach was also made to obtain more 
productive alga. An effort using specific mutation 
process  with N+ beam implantation technique was 
conducted to design C. pyrenoidosa for obtaining higher 
lipid content from the alga [16]. It resulted an increase of 
the lipid content from the wild strain up to 32.4 %. 
Interestingly, the stability of C. pyrenoidosa after mutation 
proved that it is feasible to apply as potential strain for 
biodiesel production. 

 

2.2. Spirulina 
Genera of Spirulina is among the most studied algae 

because its usefulness to be pharmaceutical raw materials, 
animal feeding and food stock [34] [35]. Due to its high 
potential as food stock, most of this alga applications are 
oriented for biomass production in the artificial medium 
with controlled condition. However, some of the 
productions are still aimed to produce biomass non-food 
resources. It can be generated for bioethanol process 
with following fermentation using yeast [36] or biodiesel 
production through transesterification process [37]. 
Nonetheless, high biomass productivity is the most 
important parameter to achieve even though 
composition of the biomass determines the suitable 
process and utilization of the alga. 

In comparison to carbohydrate and lipid, the 
production of protein should be increase as it is the 
expensive part of biomass and necessary for food supply. 
However, the application of protein utilization along 
with the residual biomass such as lipid and carbohydrate 
is still applicable and worth consideration [38]. Biomass 
utilization of S. plantesis can be in sequence from protein 
extraction to residual biomass as biofuel feedstock is 
possible. Although with emphasizing on protein yield up 
to 60.7 % by proper pH extraction time and biomass 
concentration, the biofuel potency is still available for 
about 8 % with proper techniques of extraction [39]. The 
potency of that residual biomass possibly achieves up to 
8.9 % biofuel per biomass utilized by using proper 
chloroform and methanol [40]. Prates, Radmann [41] also 
reported 12.7% lipid utilization content of biomass form 
Spirulina sp. using the different treatment to the biomass. 
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For combination of food security and biodiesel 
production, protein and lipid in biomass require high 
portion where less carbohydrates. Protein (47.3%), 
carbohydrates (13.4%) and a high lipid content (32.7%) 
were achieved under modification in nitrogen availability 
and CO2 supply [42]. Similar study of this genera was 
also achieved 46–63 % of protein content [43]. In 
contrary, the transesterification of this product used only 
19.8% of the biomass with high amount of biomass 
production (4.86 g L-1), which is less efficient and the 
quality of the generated biodiesel still needs to be 
enhanced [44].. 

Spirulina has high amount of phycocyanin, blue 

substances with the ability to exhibit anti‐inflammatory, 
antioxidant and anticancer properties and it is common 
to be added in the supplements and cosmetics [43]. As it 
is mentioned previously that Spirulina sp. can produce 
high amount of protein and phycocyanin is among the 
phycobiliproteins, the utilization of this algae for water 
treatment and cosmetic raw material production is 
possible. However, such active protein needs to be 
extracted from Spirulina sp before used in cosmetic and 
cosmeceutical products [45]. 

 

2.3. Scenedesmus 
Scenedesmus is a genus of microalgae which gains 

more attention due to its ability to survive in low-nutrient 
environments. This alga is a prominent alga in the 
eutrophic and hypertropic waters [31]. It has been 
applied for many laboratory and pilot scale project for 
coupling wastewater treatments and biodiesel production 
[46] [47] . Many studies have explored the possibilities of 
this microalga with different characteristics of wastewater 
to produce biomass yield for biofuel since its ability to 
store high amount of lipid and carbohydrates [48]. 
However, different applications for this algae are rarely 
explored  

Nutrient intake of this alga is the main key for the 
versatile applications. Optimum concentration still needs 
to be considered for better removal activity. Influent 

concentration tends to have great impact on the removal 
efficiency. A study of immobilized microalgae revealed 
that ammonium removal of S. obliquus. in wastewater was 
optimum at 50 mg L-1 rather than 70 and 30 mg L-1 [49].  

Great removal of nutrients were found in the system 
that used Scenedesmus as the main organisms. Cultured S. 
acutus in wastewater reported to create higher biomass 
production than in enriched medium [22]. High removal 
efficiency as much as 98.5% of total nitrogen (TN) and 

total phosphorous (TP) and 96.6 ± 0.1% of ammonium 
was also reported [49] [46]. It has been also reported that 
this alga achieved 97% of total phosphorus and 90% of 
total nitrogen removal in direct application in domestic 
wastewater [50].  

Specific development for wastewater treatment 
purpose and considerable amount of lipid in the biomass 
are the advantages of using Scenedesmus as the alga for 
coupling wastewater treatment and biofuel generation. 
However, it is important to design proper harvesting 
system and downstream processes for utilizing this algae. 
Undesired odor caused by this alga [31] that needs to be 
considered in the scaling up process. 
 

3. Wastewater Characteristics for Cultivating 
algae 
Application of wastewater as the medium for algae’s 

growth has been adopted for decades since wastewater 
contains nutrition that algae need along with the 
inhibitory factors of the algae. Nutrients such as 
Nitrogen and Phosphorous are abundant in some kind of 
wastewaters as well as content of Chemical Oxygen 
Demand (COD). Some of the wastewaters also contain 
metals which can be in the trace components and some 
of the metals are also considered as toxic substances. 
Application of wastewater also needs to consider other 
operational parameters in wastewater treatment system 
such as light and Carbon dioxide (CO2) (Fig. 1). 
 

 
Fig. 1. Cultivation process and products of coupling wastewater treatment and generating algae biomass. 



DOI:10.4186/ej.2020.24.6.11 

ENGINEERING JOURNAL Volume 24 Issue 6, ISSN 0125-8281 (https://engj.org/) 15 

3.1. Chemical and Biological Oxygen Demands 
As impact of algae in wastewater is widely studied, 

COD or chemical oxygen demand is found not to be the 
substance that can easily be removed nor consumed by 
the algae. Many studies have reported the removal of 
COD less than half of the initial concentration [51]. This 
is due to the fact that the source of carbon of the algae is 
mainly from carbon dioxide [52]. However, the 
occurrence of organic compound in the water or 
wastewater in very low concentration was reported to 
enhance the production of algae biomass [51]. 

A study from [53] revealed that the exact and highest 
condition of COD in the wastewater were not the most 
suitable concentration of algae to growth. Nonetheless, 
half of the COD from piggery wastewater displayed the 
optimum amount of COD for the algae to growth [53]. 
However, the least concentration also decreased the 
concertation of the algae by only a half of the highest 
concentration. High production of algae biomass were 
relatively found in the less than 2000 mg L-1 COD 
content (Table 2) which proves that the inhibition factor 
of COD in a very high concentration is significant for 
algae biomass. 

Table 2. Chemical oxygen demand removal and biomass production using wastewater as growth medium. 

Species Wastewater COD 

(mg L-1) 

% 

removal 

Biomass 

(g L-1) 

pH Temp 

(°C) 

HRT 

(h) 

Reactor Ref 

Scenedesmus sp. Vinasse 27,100 36.2 4 7.0 25 30 Bioreactor [54] 

Chlorella vulgaris Municipal 

wastewater 

61.5 41 5.11  25-26 216 PBR [55] 

Selenastrum gracile 53 4.31     

Scenedesmus 

quadricauda 

63 0.51     

Indigenous algal 

population 

45 11     

S. obliquus Piggery 

wastewater 

3200 65.06 1.68 6.9 4 48 PBR 

 

[53] 

2200 73.41 1.84     

1600 75.29 2.18     

1200 72.29 1.58     

800 63.02 1.20     

400 61.58 0.87     

C. vulgaris synthetically-

made 

municipal 

wastewater 

490 96 2.20 8.8 25 48 PBR [56] 

C. vulgaris Aquaculture 

wastewater 

8.5 - 0.07 7.78 25 120 PBR [57] 

S. obliquus - 0.06     

Chlorella kessleri wastewater 

from the 

WWTP 

70 - 2.70 7.5 25  PBR [58] 

Chlorella vulgaris centrate 

from the 

WWTP 

2.91     

Microspora willeana 

and other 

microalgae in less 

occurrence 

Dairy 

manure 

149 >99 4.982 7-7.5 22 168 Pond [59] 

79.7 >99 5.002     

128 >99 4.992     

Chlorella sp. Polluted 

water 

1,200 51 - - - 168 Pond [60] 

1 mg L-1 of chlorophyll a content. 2 g day-1 biomass generated from 1 m3 pond. 
 

As a part of COD, biological oxygen demand (BOD) 
reflects the biodegradable organic matters in the 
wastewater and often used as the parameters for 
biological wastewater treatment system. BOD can be 
removed drastically using microalgae culture as it was 
found by Henry et al that BOD was removed by Chlorella 
spp. as much as 92.8 % while the total COD was 

removed 59.5% in sewage effluent from sewage 
treatment plant [61]. Similarly, Usha et al applied pulp 
and paper mill effluent for cultivating Scenedesmus sp. and 
it resulted 75% and 82% removal of COD and BOD, 
respectively [62]. A study of synthetic wastewater by Das 
et al showed a relatively similar removal between BOD 
and COD (98.5% and 97.8%, respectively) [63]. It is 
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important to note that in the study of Henry et al, 
BOD:COD ratio is lower (0.49) than in the study of 
Usha et al (0.98). Here, ratio of the BOD:COD are 
important to determine the total removal of the COD. 
However, ability of microalgae to remove COD does not 
always depend on the high ratio of BOD/COD. It is 
shown that even in 0.68 BOD/COD ratio, final 
concentration after treatment of BOD and COD were 
relatively identical [64]. Thus, it is important to consider 
both COD and BOD in the wastewater as one of the 
main parameters to be removed. 
 
3.2. Nutrients 

Wastewater containing nitrogen and phosphorous as 
the contaminants can trigger eutrophication in the 
natural water body and thus it is important for the 
removal system to eliminate those nutrients. The use of 
algae as the agent for nutrient removal in wastewater 
treatment has also been intensively studied over years 
[65]. Recently, coupling nutrient removal with biomass 
production obtain more attention for wastewater 
treatment development and mitigating energy crisis. 
Variety in nutrients concentration plays an important role 
since the difference of biomass yielded is often addressed 
by the slight different of nutrient concentration (Table 3). 

Nitrogen is important in the forms of peptides, 
proteins, chlorophylls, energy transfer molecules (ADP, 
ATP), and nucleic acids (DNA, RNA) in cells where all 
the metabolism activities involve these molecules [66]. In 
nature, algae plays an important role for conversion of 
inorganic nutrient into organic form [49]. Nitrogen 
concentration in water body determines the algae growth 
since this nutrient is very important to synthesize 
biomass of algae. It was found that the 9.61×10-4 M of 
nitrogen in waterbody was the optimum concentration 
compared to both lower and higher concentrations [67]. 
Form of nitrogen also appears to be the determining 
factor for algae growth. It is found in D. tertiolecta that 
prefer nitrogen in the form of nitrate rather than 
ammonia [68]. Furthermore, for both nitrogen and 
phosphorous, the effect might be different in the 
limitation. Intake limitation of nitrogen in water can 
enhance the growth of algae in certain condition [69] 
while in phosphorous showed no significant impact on 
growth of the cultures [68]. 

Likewise, phosphate also plays an important role in 
metabolism of algae as it constructs many 
macromolecules in the cell of algae such as in lipids, 
proteins, and nucleic acid. In more detail, inorganic 
phosphate is the form that very important for algae 
growth and metabolism. [70] stated that phosphorus in 
the form of H2PO4

- and HPO4
2- are the most preferably 

form which algae prefer to use in the metabolisms. They 
also explained that these two forms of phosphorus are 
incorporated by phosphorylation to be organic 
compound. It is noteworthy that the cell energy in form 
of adenosine triphosphate and adenosine diphosphate 
contain phosphate group of which the dissimilation of 
each group generates energy to the cell. It is noteworthy 

that apart from the ATP and ADP energy source can 
come from oxidation of respiratory substrate and light in 
the photosynthesis case. These sources of energy, 
interestingly, are also used to transfer the phosphate 
from environment to the cell through plasma membrane. 
However, different from nitrogen, the phosphorus 
source of algae can be both organic and inorganic. Yet, 
some of the algae are likely to use organic phosphate in 
esters groups for growth substrate [71]. 

Concentration of TN varies from the source of the 
wastewater. High concentration of nitrogen can reduce 
optimum algae biomass as the inhibitory factor where 
insufficient concentration leads to reduction of algae 
productivity due to less nutrient for metabolism and cell 
generation [65]. However, high amount of nitrogen was 
acceptable for Desmodesmus sp. that produce 4 mg L-1 
biomass in the wastewater with nitrogen up to 1,420 mg 
L-1 in batch reactor with 30 h HRT [54]. On the other 
hand, Chlorella sp. stil managed to produce 34.6 mg L-1 
chlorophyll content in the occurrence of high phosphate 
concentration (392 g DW m-2day-1) [72]. Nonetheless, the 
removal of nutrient in both cases were less than 70 % in 
average which showed a lack of efficiency in the removal. 

The trophic which manifests the carbon source 
utilization is important in the removal process. 
Mixotrophic algae usually obtain high yield with better 
nutrient removal efficiency [49] [73] [48]. Here, trophic 
condition plays an important role to determine the 
optimum removal. However, the price of effective 
carbon source is high and the cheap carbon source such 
as high COD wastewater tends to contain more nutrient 
which increases the total concentration to be removed. 
Thus, proper construction of system is crucial for this 
circumstance. 

Combination of both COD and nutrients are 
important to support algae growth. However, it is rare to 
obtain all the parameters contained in the single 
wastewater source. Municipal wastewater usually contains 
moderate concentration of three parameters [3] [74] 
where it needs less COD and high amount of 
phosphorous and nitrogen. On the other hand, decrease 
of COD detected in the less nutrients. It is also found 
that high ration of Nitrogen and Phosphorous (N:P ratio) 
can reduce the possibility to obtain optimum 
concentration of both nutrients using dilution. For 
optimum uptake 5:1 until 12:1 of N:P ratio was described 
by [75]. Most of the municipal and industrial wastewaters 
have ratio between these values where the direct dilution 
using recycle water is possible to reach optimum 
concentration of both nitrogen and phosphorous [76]. 
Nevertheless, several wastewaters especially diluted 
digestate from the WWTP contain nitrogen in a very 
high concentration [74]. While nitrogen concentration 
shall be reduced, phosphorous concentration in 
wastewaters are mostly in the sufficient amount for 
supporting microalgae. Strong dilution is suggested in the 
condition of extremely high and concentrated substrates. 
Here, the dilution has two main advantages. Firstly, 
turbidity of wastewater can be reduced to increase the 
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light penetration and secondly it helps reducing nitrogen 
content into optimum concentration for algae. In 
contrast, this situation can also induce phosphorus 
concentration to plunge and it becomes insufficient for 
biomass production. 

Different strains respond differently to the change of 
nutrient content in the medium [74]. Thus, proper 
selection of algae strain from wild type can be the 
determining factors for optimum biomass generation [77]. 
Indigenous strains from wastewater ponds usually have 
been more subjected to the environmental stress and 
changes [78]. This kind of stains can ease the phase of 

acclimatization since the strains have been naturally 
adjusted to the wastewater condition. Another 
prospective path to generate synergistic combination 
between nutrient removal by the algae and biomass 
productivity is by utilizing genetically modified algae 
strains that the niche and characteristics are suitable with 
the treated wastewater [79]. Nevertheless, it is important 
to note that genetically modified algae have several 
drawbacks in lack of adjustment and adaptation in highly 
fluctuating concentration of nutrients in the wastewaters. 

 

Table 3. Effect of nutrient in algae biomass yielded from wastewater. 

Algae 

Species 

Wastewater Total 

Nitrogen 

(mg L-1) 

Total 

Phosphorous 

(mg L-1) 

Biomass 

(g L-1) 

pH Temp 

(°C) 

HRT 

(h) 

Reactor Ref 

Desmodesmus

s sp. 

Vinasse 1,420 2.61 4 7.0 25 30 Bioreactor [54] 

C. vulgaris Municipal 

wastewater 

32.2 3.90 5.11  25-26 216 PBR [55] 

Selenastrum 

gracile 

4.31     

S. 

quadricauda 

0.51     

Indigenous 

algal 

population 

11     

S. obliquus Piggery 

wastewater 

120.69 129.22 241.67 6.43±0.

09 

25±1 12 PBR 

 

[53] 

C. vulgaris synthetically-

made 

municipal 

wastewater 

50 10 2.2 8.8 25 48 PBR [56] 

C. vulgaris Aquaculture 

wastewater 

6.81 0.42 0.07 6.8-7.2 25±2 24 PBR [57] 

S. obliquus 0.06     

C. kessleri wastewater 

from the 

WWTP 

140  5.76 2.70 7.5 25 240 PBR [58] 

C. vulgaris 2.91 7.5 25 240  

Auxenochlore

lla 

protothecoides 

Concentrate

d municipal 

wastewater 

134 212 1.16 6.31  25±2 192 Bioreactor [80] 

Algae 

consortium 

Domestic 

wastewater 

50.0 50.0 0.43 7.23±0.

29 

16-23 96 Pond [81] 

Lygnbya sp. 

and Spirogyra 

sp. 

Rivers 1.29 0.23 16.32 - 5-30 144 Pond [82] 

1.03 0.14 3.62     

1.05 0.11 3.82     

Chlorella sp. Centrate of 

primary and 

secondary 

effluents 

275 392 34.62 7.0∼7.5 25 39.5 PBR [72] 

Chlorella sp. Anaerobicall

y digested 

manure 

200 2.5 6.832 8.5 18±2 720 Pond [83] 

1 mg L-1 of chlorophyll a content. 2 g DW m-2day-1 

3.3. Metals Some metals are important parts of cell metabolism. 
Copper, iron, zinc and manganese are found as the 
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cofactor of several enzymes in the chloroplast and 
mitochondria [84]. Excess occurrence of metals 
(especially heavy metals) may lead to harmful effects for 
the algae. Occurrence of metals in proper concentration 
induces the uptake through transporter protein in the 
membranes of algae [85]. Metals toxicity inside the cell is 
related to the production of the reactive oxygen species 
(ROS) in the intracellular compartment and its matrix. As 
a consequence, unbalanced cellular redox status may 
occur inside the cell along with the reduction of 
antioxidant concentration [86]. Monteiro [85] also 
proposed several toxic mechanisms that affect the 
structure of the microalgae. The first effect is 
replacement the substantial metals for the microalgae. 
This mechanism may lead to the disruption of some 
macromolecules inside the cells. The second effect is the 
interruption the pathway of important metabolism inside 
the cells. This mechanism may create insufficient 
metabolites availability as building blocks for the cells. 
The third effect is the removing or weakening the bonds 
between cell membrane and proteins. This mechanism 
can easily create the cell rupture. Lastly, reducing the 
photosyntate of autotrophic and mixotrophic microalgae 
can create lower biomass for mitotic activity and biomass 
generation. 

To counteract the damage inside the cell, metals are 
stored or converted into less harmful state by changing 

the oxidation state to create possible condition for 
enzyme to convert the metals [85] (Fig. 2). Removal of 
metal especially heavy metals mostly relied on the 
immobilized microalgae and only some of the treatments 
occupied microalgae in the unattached and live biomass 
[87]. Copper (Cu), Zinc (Zn), Lead (Pb), Cadmium (Cd), 
and Manganese (Mn) are the most common metals to be 
treated by algae (Table 4). Cladophora glomerata, Oedogonium 
westii, Vaucheria debaryana and Zygnema insigne were also 
reported to remove several heavy metals in industrial 
wastewater such as cadmium, chromium, lead and nickel 
with considerable bioaccumulation of Cladophora glomerata 
(80.3%), O. westii (63.3 %), V. debaryana (92.1 %) and Z. 
insigne (93.0 %) [88]. The maximum removal of copper 
(85%) was reported by using batch system while in the 
sodium alginate algae beads algae beads the removal was 
up to 95.4% using Spirulina sp. [89]. The order of the 
removal is also different in different heavy metals [90]. 
Chromium has been reported to be among the most 
pertinent heavy metals to be removed and accumulated 
by the algae [91] [92]. These removals also included 
reductions of electrical conductivity, biological oxygen 
demand, chemical oxygen demand, total dissolved solids 
and nitrate of the wastewater with an increase in 
dissolved oxygen. 

 
Fig. 2. Fate of metals in the algae cell. 

Heavy metals in the water also cause various effects 
to the algae. Combinations of heavy metals were found 
to cause additive effects for Chlorella sp. while the other 
combinations occurred as synergistic effects for the alga 
by [93]. Copper and zinc were also reported to decrease 

the cell density in a culture of Chlorella sp. where copper 
decreased amount of the algae by decreasing the pigment 
of the alga and zinc eliminated the alga growth after 5-
day incubation [94]. These effects vary between the algae 
and the contamination level of heavy metals and thus 
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consideration of the production of biomass in the 
detrimental excess heavy metals shall be considered. 

Heavy metals removal by biosorption process can be 
done by application of algae to effectively eradicate the 
pollutant through accumulation in biomass generation. 
However high dose of metals can cause an increase of 
ROS inside the alga cells and consequently it creates 
damage in cell structures. The mechanism of heavy metal 
removal in moderate dose is related to the high affinity 
and larger surface area of the algae. The mechanisms can 
vary between each alga since the surface, morphology, 
cell wall, membrane structure, and composition are 
different and specific for each alga [95]. Thus, it is 
important to choose proper algae strain for generating 
biomass and lipid with sufficient biosorption of metal. 
Generally, absorption, precipitation, oxidation, and 
reduction of metals in the water by microbial are the 
mechanisms that required in order to perform metals 
removal. By the all mechanisms, algae are more 
advantageous than other microbes in this application 
since algae requires less carbon source for metabolisms 
and for building biomass. As the biomass can be 
generated autotrophically, sufficient amount of biomass 
is generated in minimum organic carbon requirement and 
sufficient amount of biomass to remove metals from the 
wastewaters is achieved in modest solution [96]. 
Nevertheless, high concentration of metals can reduce 
algae biosorption since excess amount of metal 

occurrence can cause lethal effect to algae. Here, capacity 
of metal accumulation in cells in regards with initial dose 
is crucial to build successful system. Algae resistance of 
metal plays important role here to keep the growth state 
of the algae by generating biomass while the amount of 
metals that can be absorbed and further it increases along 
with the growth of the biomass. Apart from selection of 
natural strains in the wastewater containing high amount 
of metals, there is always an opportunity for genetically 
modified algae in this system. Metals removal 
mechanisms involves many proteins and genes that 
regulating metal absorption, detoxification, and tolerance 
mechanisms [97]. By expressing certain peptides for 
metals ion captures, enhancing capacity of removal as 
well as the resistance of metals are possible to reach [98]. 

Although lipid accumulation is also triggered under 
environmental stress, excess metals is potentially able to 
reduce the total lipid generated from the biomass. Excess 
intake of metals was reported to enhance oxidation of 
lipid [86]. In the final process of cultivation, even though 
high alage biomass can be generated, low lipid content to 
convert into biofuel is still great bottleneck of this system. 
A very high dose metals can also lead to the failure of the 
system since all the algae are potentially fail to grow for 
treating metals in the wastewater. Wastewater with 
moderate dose of metal is recommended to utilize in this 
system because the algae can still maintain the growth 
with sufficient removal of metal from the wastewater. 

Table 4. Metals removal and accumulation by algae. 

Species Element

s 

Metal 

accumulation 

(mg g-1) 

Initial 

concentration 

(ppm) 

% removal Ref 

Chlorella spp. Cu 15×10-3–2.6 79–1,789  - [99] 

Zn 1×10-3–0.18 23-11,625  - 

Pb 2×10-3–0.02 10-6,887  - 

C. minutissima Zn 9.17  21 62.05 ± 

0.04 

[100] 

Mn 4.04  21 83.68 ± 

0.14 

Cd 4.27  21 74.34 ± 

0.03 

Cu 1.40  21 83.60 ± 

0.09 

Alginate-

Spirulina2 

Pb(II) 12.9 100  - [101] 

Cd(II) 4.5 100  - 

Cu(II) 4.1 100  - 

Chitosan-

Spirulina2 

Pb(II) 4.8 100  - 

Cd(II) 3.6 100  - 

Cu(II) 2.7 100  - 

Arthrospira Ce 18.1 80–800 - [102] 

38.2 - 

S.  platensis Pb - 100 91 [103] 
1 concentration in mM. 2 immobilized state of algae. 

 
 
 

4. Operational Parameters  
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4.1. Light 
Utilization of light by the algae determines the 

biomass yield because the different time of light intensity 
can create variety of metabolisms by which biomass is 
synthesized in several pathways [104]. Algae cells 
respond the light based on its intensity. [3] described the 
dynamic of algae photosynthesis based on the intensity 
level. At the low light intensity, photosynthesis increases 
with the higher intensity. When the light intensity reaches 
the saturation level and exceeds the demands of photon 
in photosystem II in the chloroplast organelle, the 
photosynthesis rate does not increase in this stage. 
Higher amount of light is able to decrease the 
photosynthesis rate due to damage to the photosynthetic 
apparatus. 

Light penetration plays a crucial effect to the 
cultivation. Culture of C. sorokiniana with high density has 
less gross productivity than that with less density [105]. 
Study of the light amount exposed into C. vulgaris 

cultivation pointed out that 360 μmol m−2 s−1 of photon 
could be the most suitable for the algae to growth where 
high and low photon decreased the biomass yield of the 
algae [106]. Conversely, [107] reported that the condition 

above 150 μmol m−2 s−1 was observed as the start of 

inhibition factor for algae to grow and 80 μmol m−2 s−1 
of light was proper for C. vulgaris to reach optimum yield 
production. Nonetheless, the low photon concentration 
was compensated with rich molasses under mixotrophic 
condition. It is important to note that the algae in the 
heterotroph condition produced higher biomass and 
nutrient removal than the mixotropic or autotroph 
condition [108]. Also, the low light intensity was only 
suggested for mixotropic algae. For application in biofilm, 
[109] emphasized a slightly higher standard of light 
intensity by using 120 μmol m−2 s−1 as the optimum 
condition of algae growth.  

Aside from the previously mentioned, strain 
selection is also an important factor for designing the 
proper light intensity for the algae. 420 μmol photons 
m−2 s−1 was reported to be the optimum light intensity 
for C. protothecoides in the normal system while relatively 
moderate light intensity of 100 μmol m−2 s−1 was 
reported to be the optimum condition for A. platensis 
[110]. It is also noteworthy that wastewater nutrient 
removal is also affected by the light intensity. Thus, 
selection of strain also needs to consider the light 
availability where the strain will be cultivated. 

The purpose of wastewater treatment system also 
needs to be considered for light adjustment. Low light 
intensity can also enhance the removal of COD from the 
water. C. kessleri and C. protothecoide have been reported to 
have different optimum light intensity for TN, TP, and 
COD removal [111]. TN and TP are able to be removed 
effectively by those algae in the range of 30 -120 μmol 
photons m−2 s−1 where the COD is effectively removed 
in the absence of light. This condition is strongly related 
with the trophic condition of the cultivation system. 
Heterotroph algae growth was proven to produce higher 
biomass with the absence of light than that in the 

autotroph condition with sufficient amount of N [78]. 
Thus, light intensity setting needs to consider the 
wastewater contents as well. 
 
4.2. Carbon Dioxide 

Similar with the light intensity, carbon dioxide (CO2) 
concentration is strongly affected by the cultivation 
condition. It is used in the photosynthesis as most of the 
algae are photoautotrophic [112]. The CO2 sequestration 
capacity of microalgae is ten times higher than that from 
terrestrial plant [113] and thus, algae cultivation has been 
emerging as the promising negative CO2 emission. Green 
microalgae are expected to be applied in the system 
where not only nutrient removal and biomass as 
biodiesel are obtained as the advantages but also the 
carbon sequestration is expected to be applicable to 
absorb the gas. Application of CO2 in the algae 
cultivation can run not only carbon sequestration process 
but also enhance the other advantage such as metals 
bioremediation [114]. 

Design of the system is very important in this 
parameters. Different diffuser can cause different 
production of biomass as the result of the gas dispersion 
and air bubble size which related to the CO2 dilution 
factors. The gas introduced into the system is usually 
affected by two factors, diffuser type and flow rate of the 
gas. Sintered stone, porous curtain, perforated ring, and 
porous wood diffusers was proven to generate different 
Spirulina biomass concentration with 0.05 vvm 
concentration of CO2 [115]. Higher concentration of 
CO2 introduced into the system could lower the 
efficiency of uptake rate of gas from the system to the 
biomass. 

Application in the flue gas of industrial system has 
been reported in several study. Spirulina sp. was reported 
to achieve 24% reduction in flue gas CO2 in autotroph 
condition [116]. In that study, approximately 35% 
growth rate increase was recorded when CO2 supplied as 
the only carbon source in the artificial medium. 
Nevertheless, the low carbon accumulation was still the 
main bottleneck of this technology. In that particular 
study, the carbon fixation was only 7.5 %. It is important 
to note that to completely reduce high concentration 
CO2 in the flue gas, further study in the efficiency shall 
be made since the feasibility of this technology for high 
demand treatment gas needs large volume of reactors. 

Practical approach has been made by [117] who 

applied1 L min−1  (vvm) of CO2 from flue gas in the 
industry into the tank of Spirulina. The usage efficiency of 
CO2 has been found to be 75 %. Although the usage was 
low and it remained roughly 25% of the CO2, the system 
has given a breakthrough that this scheme can be applied 
in the near future as the industrial carbon capture, 
utilization and storage. Another study with the same 
concentration of CO2 was conducted by Uggetti, Sialve 
[118]. It has been found that 66-100 % increase of 
biomass was detected after additional CO2 with the 
increase of COD and NH4

+-N removal. Increase of this 
biomass along with injection of CO2 indicates 
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recognition of high tolerance of CO2 in the system. It is 
noteworthy that excess CO2 injection can increase the 
bicarbonate ion where it can lower physiological pH and 
eventually inhibit the growth of algae [113]. However, an 
increase of bicarbonate was still reported to increase the 
biomass production [119]. 

In contrary, an increase of CO2 has also been made 
to enhance heavy metals bioremediation using mixed 
culture algae. The treatment of flue gas however still 
succeeded proper removal of heavy metals with 
additional CO2 that reached 30 % [114]. Combining the 
aim of heavy metal removal with carbon sequestration 
possibly addressing the lack of removal in either 
treatment purpose. However, to achieve sufficient 
removal activity the improvement is a must for industrial 
application since the flow rate of flue gas is very high and 
with current technology it is difficult not to occupy large 
space for cultivation. 
 
4.3. Reactor Designs 

To achieve sufficient amount of algal biomass 
production and nutrients removal in wastewater, reactor 
as the place for cultivating the microalgae plays an 
important role to determine final products of this 
coupling method. The models and designs of 
photobioreactors that applied in the laboratory and pilot 
scales nowadays can be divided into two major groups 
which are open pond and closed photobioreactor [120]. 
Even though many development and variation of the 
designs, scales, and models, these two group define 
almost all of the current developed technologies in 
microalgae reactor using wastewater as a substrate. 

The Open pond reactors is reflected as a pond in 
exposed area to the natural environment with sunlight as 
major source of light [121]. In the other hand, closed 
photobioreactors (PBRs) have many advantages where 
most of the factors can be controlled inside isolated 
environment [122]. These characteristics affect the 
consumption of nutrient, production of biomass, and 
effluent quality after cultivation. Application of 
wastewater in the algal culture has more room for 
application in both open pond reactor and closed 
photobioreactors. However, many considerations such as 
location and contamination are important regarding the 
proper application of each groups. Location can be very 
important cultivation process. In open pond system, 
location can determine the temperature, light intensity, 
additional agitation for wind drive while the PBRs are 
more flexible in terms of location [123-125] but several 
PBRs which utilize sunlight as the main source of light 
might be affected in the shading of location [123, 126]. 
Moreover, location in the feasibility of this coupling idea 
must be near by the source of wastewater to reduce the 
transfer cost. As most of the studies already proved that 
open pond can be very susceptible for contamination 
[127, 128], different approach is needed for wastewater 
as an influent medium. In contrast, PBRs system cause 
material exchange limited from the gasses injection 
and/or feeds water or medium which creates low risk of 

contamination yet the possibility to be contaminated still 
occur [129]. 

Application of wastewater in PBRs is relatively 
common to study the microalgae cultivation in 
wastewater in order to remove the nutrients and yield 
algal biomass (Table 2 and 3). Yet, further development 
from the data obtained in PBRs takes place in open pond 
[62]. In the open pond, location and contamination affect 
the holistic process. However, application of open pond 
as the model for microalgae cultivation is more feasible 
due to its lower operational and capital costs [120]. Thus, 
economical factors shall be put as one of the main 
consideration for the reactor design since one of the 
obstacle to put this coupling concept into full industrial 
scale production is the profitability [130]. 
 

5. Constrain between High Biomass 
Productivity and Removal Efficiency 
Hundreds of algae species have been tested to grow 

in many substrates for various purposes. The studies of 
several wastewaters were ranging from dairy manure [14],  
municipal wastewater [22], chicken [131], piggery and 
brewery wastewater [132]. The usage of the wastewater 
was preferably easier than that using other nutrients 
sources. However, some of the studies tried to analyze 
and modify the condition in order to obtain more lipid 
content and biomass such as varying the salinity [23], 
nutrient starvation [23, 133] as well as the occurrence of 
metal as a trace elements in the environments [23, 26, 
133, 134]. These particular factors are important to algae 
for growth. It might show the increase of growth rate if 
the light is properly penetrating the water as [133] found 
that the light was significantly affecting the rate of 
biomass in the end of the cultivation period. This 
fundamental finding is crucial since there are numerous 
that stated the removal of nutrient is as important as the 
growth of algae productivity. 

The application of waste or wastewater to cultivate 
Spirulina is not a breakthrough study. A considerably high 
amount of biomass (1.47 g/L) was achieved under 
optimum condition by using cow effluent [135]. High 
removal efficiency (>90%) of TP and COD by Spirulina 
was also reported in the saline environment but with low 
biomass production 0.76 g L-1 [136]. A similar study 
using synthetic municipal wastewater, showed the TN 
and TP removal of 92.58% and 94.13%, respectively with 
biomass production up to 262.50 mg/L [137]. A 
shortcoming of this finding was probably simply the 
separation of the Spirulina which difficult considering the 
small size of this algae. However, it has many advantages 
such as nutrient recovery and wastewater treatment 
alternative. The result of high biomass accumulation can 
also be the provider for cheap and supplementary food 
for aquaculture animals [35]. 

The lack of nutrient removal efficiency can mean 
there must be another treatment process following the 
algae cultivation and the objective to obtain nutrient 
removal activity from the system is considerably 
unsuccessful. However, removals of ammonia, total 
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nitrogen, total phosphorus, and COD that achieved were 
still lower than the system specified only for removal of 
these particular contaminants [14]. Thus, in high 
concentration of the contaminant in wastewater, high 
dilution factor where the algae can grow rapidly with 
higher efficiency of removal is preferable solution. 
Furthermore, the notable usage of organic and inorganic 
carbon was important since it indicated the ability for 
this alga to use organic carbon beside CO2 as carbon 
source for synthesizing the biomass [138]. 

Consecutive treatment between primary treatment 
system as demonstrated in the process combining 
anaerobic digestion and algae cultivation is promising for 
removal of nutrient and algae cultivation [14]. 
Nevertheless, the following process after primary process 
is only expected to remove excess nutrient that cannot be 
removed in the prior treatment. Therefore, the 
occurrence of high COD is assumed to be lower than the 
initial concentration of influent of most of the primary 
wastewater treatment system. 

 

Fig. 3. Constrain between wastewater treatment demands and microalgae cultivation demands. 

Cultivating algae in wastewater contaminated with 
heavy metals or other toxic substances cannot be adapted 
for generating feed for animals or food source. In terms 
of re-utilization of the alga, there must be such 
simplification and pre-treatment regarding the water that 
is utilized for growth medium. Monosodium glutamate 
wastewater was proposed to be able to apply as a 
medium for Spirulina sp. using concentration of 25% CW 
for protein production and 50% for lipid and 
carbohydrate production since the wastewater was 
claimed as the wastewater with high amount of nutrient 
and organic compound yet the contaminants are not 
poisonous nor dangerous [139]. 

Light period and intensity also obtain great part of 
installation for algae cultivation. It is also important to 
pay attention in the combined system of wastewater 
treatment and biomass production. Several reactors are 
usually relying on artificial light which continuously or 
periodically produced light for the algae. Standing in 
contrast, algae which cultivated outdoor usually depends 
on the sunlight as the photon source. In tropical areas, 
the photoperiodic cycle is usually stable through the year. 
However, in certain places such as in Europe the light 
phase in the day time can change in the spring/fall to the 
midsummer. Since this phenomenon can cause bias in 
the system and unstable production of biomass, 

geographical factor is important for sunlight dependent 
algae cultivation system while in the bioreactor with light 
feeding system, capital and operational cost are still the 
bottlenecks. Nonetheless, the acclimatization process of 
algae is able to address the light factors drawback. The 
ability for modulation of light harvesting capacity in 
order to optimizing light suggests the production of algae 
can be managed in low light conditions [3]. However, 
growth rate and productivity of algae are strictly related 
to light factor and alteration or limitation of light 
intensity definitely affects the algae yield. 

Apart from water treatment to remove undesired 
substances point of view, the production of high biomass 
yielded from the system shall be focused. Taking Chlorella 
sp. as the most cultivated microalgae for biodiesel, the 
percentage of the lipid content was relatively wide which 
around 13.2-60 % of the total biomass (Table 1). The 
utilization of this alga should be considered. This range 
of percentage is necessary to be noticed for further 
decision of algae cultivation. It is important to note that 
wide range of this percentage can create gap in the 
production system and capital cost calculation for the 
system to be built. To each high biomass of this alga, it is 
also necessary to create the condition based on the 
wastewater characteristics. Optimum biomass 
concentration up to 11 g L-1 is still possible to reach by 
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using wastewater alongside with effective removal of 
undesired substances [17]. To obtain such concentration, 
proper water recovery, sufficient but not excess 
concentration of N and P solely for building biomass and 
other metabolism activities, mixotrophic condition for 
algae to digest organic carbon, and heavy metals defense 
mechanisms are expected to address both importance 
(Fig. 3). 

 

6. Conclusion and Further Possibilities 
Green microalgae have emerged the importance of 

its application not only for wastewater remediation but 
also for biomass orientation. Many aspects need to be 
reconsider for the algae until it can be adopted in 
practical application. To meet the demand of single stage 
treatment using algae cultivation, the alteration in 
removal efficiency in organic matters and nutrients are 
important to achieve at the beginning. As for the 
biomass yield, several species with certain systems 
applied were able to produce high biomass productivity, 
so that it can ease the selection and decision for proper 
species in specific wastewater. However, organic matters, 
nutrient and contaminants such as metals of wastewater 
still able to interfere the biomass production when the 
amount exceeds the limits of algae. Furthermore, factors 
such light and inorganic carbon source are potential to 
interfere the optimum condition. Design of the reactors 
where the algae cultivates is also important to be suitable 
to reach the goal of removal contaminants as well as 
yielding microalgal biomass. Eventually, intersection 
between wastewater treatment importance and biomass 
generation for biofuel shall be pictured carefully to place 
direction of development in the future. 

The application of the wastewater as the source of 
microalgae nutrient and the cultivation as wastewater 
treatments are the ideal coupling idea for addressing 
energy demand and environmental pollution problems. 
Nevertheless, application is still limited to the pilot scale 
and other large scale experimental reactors. Apart from 
the composition of wastewater, suitable strains and 
cultivation conditions, to meet reasonable capital and 
operational costs, this concept is still limited to be 
performed. Here, challenge of full scale application in 
industrial level is facing several problems regarding the 
profitability such as land requirement, cost of harvesting 
and post-harvest processes, as well as limited capacity in 
large and high removal demand of metropolitan city. 
Here, integrated studies regarding this idea with 
combination of improvement in each aspect are 
important. In the future, to approach the 
industrialization goals of this idea, constrains such as 
demands of suitable microorganism and wastewater 
condition still need to be improved. Valuable product 
from the coupling requires to be emphasized by 
obtaining suitable steps for post-cultivation process. 
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