130 research outputs found
Attenuation of antigen-induced airway hyperresponsiveness and inflammation in CXCR3 knockout mice
<p>Abstract</p> <p>Background</p> <p>CD8+ T cells participate in airway hyperresponsiveness (AHR) and allergic pulmonary inflammation that are characteristics of asthma. CXCL10 by binding to CXCR3 expressed preferentially on activated CD8+ T cells, attracts T cells homing to the lung. We studied the contribution and limitation of CXCR3 to AHR and airway inflammation induced by ovalbumin (OVA) using CXCR3 knockout (KO) mice.</p> <p>Methods</p> <p>Mice were sensitized and challenged with OVA. Lung histopathological changes, AHR, cellular composition and levels of inflammatory mediators in bronchoalveolar lavage (BAL) fluid, and lungs at mRNA and protein levels, were compared between CXCR3 KO mice and wild type (WT) mice.</p> <p>Results</p> <p>Compared with the WT controls, CXCR3 KO mice showed less OVA-induced infiltration of inflammatory cells around airways and vessels, and less mucus production. CXCR3 KO mice failed to develop significant AHR. They also demonstrated significantly fewer CD8+ T and CD4+ T cells in BAL fluid, lower levels of TNFα and IL-4 in lung tissue measured by real-time RT-PCR and in BAL fluid by ELISA, with significant elevation of IFNγ mRNA and protein expression levels.</p> <p>Conclusions</p> <p>We conclude that CXCR3 is crucial for AHR and airway inflammation by promoting recruitment of more CD8+ T cells, as well as CD4+ T cells, and initiating release of proinflammatory mediators following OVA sensitization and challenge. CXCR3 may represent a novel therapeutic target for asthma.</p
Protective effect of heat-processed Gynostemma pentaphyllum on high fat diet-induced glucose metabolic disorders mice
Glucose metabolic disorders (GMD) can promote insulin resistance (IR) and diabetes, and damage liver and kidney. Gynostemma pentaphyllum is commonly used in the clinical treatment of diabetes, but the research on its main active constituents and GMD has not been reported yet. This study explores the therapeutic potential of gypenosides of heat-processed Gynostemma pentaphyllum (HGyp) on high-fat diet-induced GMD in mice. HGyp was administered at different doses for 12Â weeks. The investigation encompassed an array of parameters, including body weight, blood lipids, blood glucose, and liver tissue components. Metabolomic and network analyses were conducted to uncover potential targets and pathways associated with HGyp treatment. The results revealed that HGyp alleviated GMD by reducing body weight, blood glucose, and improving blood lipids levels, while increasing liver glycogen and antioxidant enzyme levels. Additionally, HGyp exhibited protective effects on liver and kidney health by reducing tissue damage. Fourteen blood components were detected by LC-MS. Metabolomic and network analyses indicated the potential engagement of the AGE-RAGE signaling pathway in the therapeutic effects of HGyp.Furthermore, Western blot and ELISA assays confirmed that HGyp upregulated GLO1 and GLUT4 while down-regulating AGEs and RAGE expression in liver tissue. In light of these findings, HGyp demonstrates promise as a potential therapeutic candidate for combating GMD, warranting further exploration in the development of therapeutic strategies or functional products
Janus monolayers of transition metal dichalcogenides.
Structural symmetry-breaking plays a crucial role in determining the electronic band structures of two-dimensional materials. Tremendous efforts have been devoted to breaking the in-plane symmetry of graphene with electric fields on AB-stacked bilayers or stacked van der Waals heterostructures. In contrast, transition metal dichalcogenide monolayers are semiconductors with intrinsic in-plane asymmetry, leading to direct electronic bandgaps, distinctive optical properties and great potential in optoelectronics. Apart from their in-plane inversion asymmetry, an additional degree of freedom allowing spin manipulation can be induced by breaking the out-of-plane mirror symmetry with external electric fields or, as theoretically proposed, with an asymmetric out-of-plane structural configuration. Here, we report a synthetic strategy to grow Janus monolayers of transition metal dichalcogenides breaking the out-of-plane structural symmetry. In particular, based on a MoS2 monolayer, we fully replace the top-layer S with Se atoms. We confirm the Janus structure of MoSSe directly by means of scanning transmission electron microscopy and energy-dependent X-ray photoelectron spectroscopy, and prove the existence of vertical dipoles by second harmonic generation and piezoresponse force microscopy measurements
Molecular Characterization of Tb, a New Approach for an Ancient Brucellaphage
Tb (Tbilisi), the reference Brucellaphage strain, was classified as a member of the Podoviridae family with icosahedral capsids (57 ± 2 nm diameter) and short tails (32 ± 3 nm long). Brucellaphage DNA was double stranded and unmethylated; its molecular size was 34.5 kilobase pairs. Some sequences were found through RAPD analysis, TA cloning technology, and structural proteins were observed by using SDS-PAGE. Thus, the results have laid the foundation for the wider use of Brucellaphage’s basic mechanisms and practical applications
Dual Antiplatelet Therapy vs Alteplase for Patients With Minor Nondisabling Acute Ischemic Stroke
Importance
Intravenous thrombolysis is increasingly used in patients with minor stroke, but its benefit in patients with minor nondisabling stroke is unknown.
Objective
To investigate whether dual antiplatelet therapy (DAPT) is noninferior to intravenous thrombolysis among patients with minor nondisabling acute ischemic stroke.
Design, Setting, and Participants
This multicenter, open-label, blinded end point, noninferiority randomized clinical trial included 760 patients with acute minor nondisabling stroke (National Institutes of Health Stroke Scale [NIHSS] score ≤5, with ≤1 point on the NIHSS in several key single-item scores; scale range, 0-42). The trial was conducted at 38 hospitals in China from October 2018 through April 2022. The final follow-up was on July 18, 2022.
Interventions
Eligible patients were randomized within 4.5 hours of symptom onset to the DAPT group (n = 393), who received 300 mg of clopidogrel on the first day followed by 75 mg daily for 12 (±2) days, 100 mg of aspirin on the first day followed by 100 mg daily for 12 (±2) days, and guideline-based antiplatelet treatment until 90 days, or the alteplase group (n = 367), who received intravenous alteplase (0.9 mg/kg; maximum dose, 90 mg) followed by guideline-based antiplatelet treatment beginning 24 hours after receipt of alteplase.
Main Outcomes and Measures
The primary end point was excellent functional outcome, defined as a modified Rankin Scale score of 0 or 1 (range, 0-6), at 90 days. The noninferiority of DAPT to alteplase was defined on the basis of a lower boundary of the 1-sided 97.5% CI of the risk difference greater than or equal to −4.5% (noninferiority margin) based on a full analysis set, which included all randomized participants with at least 1 efficacy evaluation, regardless of treatment group. The 90-day end points were assessed in a blinded manner. A safety end point was symptomatic intracerebral hemorrhage up to 90 days.
Results
Among 760 eligible randomized patients (median [IQR] age, 64 [57-71] years; 223 [31.0%] women; median [IQR] NIHSS score, 2 [1-3]), 719 (94.6%) completed the trial. At 90 days, 93.8% of patients (346/369) in the DAPT group and 91.4% (320/350) in the alteplase group had an excellent functional outcome (risk difference, 2.3% [95% CI, −1.5% to 6.2%]; crude relative risk, 1.38 [95% CI, 0.81-2.32]). The unadjusted lower limit of the 1-sided 97.5% CI was −1.5%, which is larger than the −4.5% noninferiority margin (P for noninferiority &amp;lt;.001). Symptomatic intracerebral hemorrhage at 90 days occurred in 1 of 371 participants (0.3%) in the DAPT group and 3 of 351 (0.9%) in the alteplase group.
Conclusions and Relevance
Among patients with minor nondisabling acute ischemic stroke presenting within 4.5 hours of symptom onset, DAPT was noninferior to intravenous alteplase with regard to excellent functional outcome at 90 days.
Trial Registration
ClinicalTrials.gov Identifier: NCT0366141
- …