99 research outputs found

    A Genome-Wide Screening and SNPs-to-Genes Approach to Identify Novel Genetic Risk Factors Associated with Frontotemporal Dementia

    Get PDF
    Frontotemporal dementia (FTD) is the second most prevalent form of early onset dementia after Alzheimer’s disease (AD). We performed a case-control association study in an Italian FTD cohort (n = 530) followed by the novel SNPs-to-genes approach and functional annotation analysis. We identified two novel potential loci for FTD. Suggestive SNPs reached p-values ~10-7 and OR > 2.5 (2p16.3) and 1.5 (17q25.3). Suggestive alleles at 17q25.3 identified a disease-associated haplotype causing decreased expression of -cis genes such as RFNG and AATK involved in neuronal genesis and differentiation, and axon outgrowth, respectively. We replicated this locus through the SNPs-to-genes approach. Our functional annotation analysis indicated significant enrichment for functions of the brain (neuronal genesis, differentiation and maturation), the synapse (neurotransmission and synapse plasticity), and elements of the immune system, the latter supporting our recent international FTD-GWAS. This is the largest genome-wide study in Italian FTD to date. Although our results are not conclusive, we set the basis for future replication studies and identification of susceptible molecular mechanisms involved in FTD pathogenesis

    Effects of Multiple Genetic Loci on Age at Onset in Frontotemporal Dementia

    Get PDF
    In frontotemporal dementia (FTD), age at disease onset (AAO) is unpredictable in both early and late-onset cases; AAO variability is found even in autosomal dominant FTD. The present study was aimed at identifying genetic modifiers modulating AAO in a large cohort of Italian FTD patients. We conducted an association analysis on 411 FTD patients, belonging to 7 Italian Centers, and for whom AAO was available. Population structure was evaluated by principal component analysis to infer continuous axes of genetic variation, and single linear regression models were applied. A genetic score (GS) was calculated on the basis of suggestive single nucleotide polymorphisms (SNPs) found by association analyses. GS showed genome-wide significant slope decrease by –3.86 (95% CI: –4.64 to –3.07, p < 2×10–16) per standard deviation of the GS for 6 SNPs mapping to genes involved in neuronal development and signaling, axonal myelinization, and glutamatergic/GABA neurotransmission. An increase of the GS was associated with a decrease of the AAO. Our data indicate that there is indeed a genetic component that underpins and modulates up to 14.5% of variability of AAO in Italian FTD. Future studies on genetic modifiers in FTD are warranted

    Genetic risk for neurodegenerative disorders, and its overlap with cognitive ability and physical function

    Get PDF

    Gene-based association studies report genetic links for clinical subtypes of frontotemporal dementia

    Get PDF

    Mendelian randomization implies no direct causal association between leukocyte telomere length and amyotrophic lateral sclerosis

    Get PDF

    Gene Expression Imputation Across Multiple Tissue Types Provides Insight Into the Genetic Architecture of Frontotemporal Dementia and Its Clinical Subtypes

    Get PDF

    Mendelian randomization implies no direct causal association between leukocyte telomere length and amyotrophic lateral sclerosis

    Get PDF

    Susceptible genes and disease mechanisms identified in frontotemporal dementia and frontotemporal dementia with Amyotrophic Lateral Sclerosis by DNA-methylation and GWAS

    Get PDF
    corecore