32 research outputs found

    Low-frequency oscillation suppression in dystonia:Implications for adaptive deep brain stimulation

    Get PDF
    Background: Low-frequency oscillations (LFO) detected in the internal globus pallidus of dystonia patients have been identified as a physiomarker for adaptive Deep Brain Stimulation (aDBS), since LFO correlate with dystonic symptoms and are rapidly suppressed by continuous DBS (cDBS). However, it is as yet unclear how LFO should be incorporated as feedback for aDBS. Objectives: to test the acute effects of aDBS, using the amplitude of short-lived LFO-bursts to titrate stimulation, to explore the immediate effects of cDBS on LFO-modulation and dystonic symptoms, and to investigate whether a difference in the resting-state LFO is present between DBS-naïve patients and patients with chronic DBS. Methods: seven patients were assessed during either DBS-implantation (n = 2) or battery replacement surgery (n = 5), and pseudorandomized in three conditions: no stimulation, cDBS, and aDBS. Additionally, resting-state LFP-recordings from patients undergoing battery replacement were compared to those obtained during DBS-implantation; LFP-recordings from a previous cohort of six dystonia patients undergoing DBS-implantation were incorporated into this analysis (total n = 8 newly implanted patients). Results: we corroborated that a mild LFO-suppression rapidly occurs during cDBS. However, no acute changes in clinical symptoms were observed after cDBS or aDBS. Remarkably, we observed that resting-state LFO were significantly lower in patients who had been effectively treated with chronic cDBS compared to those of newly implanted patients, even when stimulation was suspended. Conclusions: our results indicate that LFO-suppression in dystonia, similar to symptom response to cDBS, might be gradual, and remain after stimulation is suspended. Therefore, tracking gradual changes in LFO may be required for aDBS implementation

    Acute effects of adaptive Deep Brain Stimulation in Parkinson's disease

    Get PDF
    Background: Beta-based adaptive Deep Brain Stimulation (aDBS) is effective in Parkinson's disease (PD), when assessed in the immediate post-implantation phase. However, the potential benefits of aDBS in patients with electrodes chronically implanted, in whom changes due to the microlesion effect have disappeared, are yet to be assessed. Methods: To determine the acute effectiveness and side-effect profile of aDBS in PD compared to conventional continuous DBS (cDBS) and no stimulation (NoStim), years after DBS implantation, 13 PD patients undergoing battery replacement were pseudo-randomised in a crossover fashion, into three conditions (NoStim, aDBS or cDBS), with a 2-min interval between them. Patient videos were blindly evaluated using a short version of the Unified Parkinson's Disease Rating Scale (subUPDRS), and the Speech Intelligibility Test (SIT). Results: Mean disease duration was 16 years, and the mean time since DBS-implantation was 6.9 years. subUPDRS scores (11 patients tested) were significantly lower both in aDBS (p=<.001), and cDBS (p = .001), when compared to NoStim. Bradykinesia subscores were significantly lower in aDBS (p = .002), and did not achieve significance during cDBS (p = .08), when compared to NoStim. Two patients demonstrated re-emerging tremor during aDBS. SIT scores of patients who presented stimulation-induced dysarthria significantly worsened in cDBS (p = .009), but not in aDBS (p = .407), when compared to NoStim. Overall, stimulation was applied 48.8% of the time during aDBS. Conclusion: Beta-based aDBS is effective in PD patients with bradykinetic phenotypes, delivers less stimulation than cDBS, and potentially has a more favourable speech side-effect profile. Patients with prominent tremor may require a modified adaptive strategy

    The characteristics of pallidal low-frequency and beta bursts could help implementing adaptive brain stimulation in the parkinsonian and dystonic internal globus pallidus

    Get PDF
    INTRODUCTION: Adaptive deep brain stimulation (aDBS) has been applied in Parkinson’s disease (PD), based on the presence of brief high-amplitude beta (13-35 Hz) oscillation bursts in the subthalamic nucleus (STN), which correlate with symptom severity. Analogously, average low-frequency (LF) oscillatory power (4-12 Hz) in the internal globus pallidus (GPi) correlates with dystonic symptoms and might be a suitable physiomarker for aDBS in dystonia. Characterization of pallidal bursts could facilitate the implementation of aDBS in the GPi of PD and dystonia patients. OBJECTIVE AND METHODS: We aimed to describe the bursting behaviour of LF and beta oscillations in a cohort of five GPi-DBS PD patients and compare their amplitude and length with a cohort of seven GPi-DBS dystonia, and six STN-DBS PD patients (n electrodes = 34). Furthermore, we used the information obtained to set up aDBS and test it in the GPi of both a dystonia and a PD patient (n=2), using either LF (dystonia) or beta oscillations (PD) asfeedback signals. RESULTS: LF and beta oscillations in the dystonic and parkinsonian GPi occur as phasic, short-lived bursts, similarly to the parkinsonian STN. The amplitude profile of such bursts however, differed significantly. Dystonia showed higher LF burst amplitudes, while PD presented higher beta burst amplitudes. Burst characteristics in the parkinsonian GPi and STN were similar. Furthermore, aDBS applied in the GPi was feasible and well tolerated in both diseases. CONCLUSION: Pallidal LF and beta burst amplitudes have different characteristics in PD and dystonia. The presence of increased burst amplitudes could be employed as feedback for GPiaDBS

    Translocated LPS Might Cause Endotoxin Tolerance in Circulating Monocytes of Cystic Fibrosis Patients

    Get PDF
    Cystic Fibrosis (CF) is an inherited pleiotropic disease that results from abnormalities in the gene codes of a chloride channel. The lungs of CF patients are chronically infected by several pathogens but bacteraemia have rarely been reported in this pathology. Besides that, circulating monocytes in CF patients exhibit a patent Endotoxin Tolerance (ET) state since they show a significant reduction of the inflammatory response to bacterial stimulus. Despite a previous description of this phenomenon, the direct cause of ET in CF patients remains unknown. In this study we have researched the possible role of microbial/endotoxin translocation from a localized infection to the bloodstream as a potential cause of ET induction in CF patients. Plasma analysis of fourteen CF patients revealed high levels of LPS compared to healthy volunteers and patients who suffer from Chronic Obstructive Pulmonary Disease. Experiments in vitro showed that endotoxin concentrations found in plasma of CF patients were enough to induce an ET phenotype in monocytes from healthy controls. In agreement with clinical data, we failed to detect bacterial DNA in CF plasma. Our results suggest that soluble endotoxin present in bloodstream of CF patients causes endotoxin tolerance in their circulating monocytes

    Adaptive deep brain stimulation as advanced Parkinson’s disease treatment (ADAPT study): Protocol for a pseudo-randomised clinical study

    No full text
    Introduction: Adaptive deep brain stimulation (aDBS), based on the detection of increased beta oscillations in the subthalamic nucleus (STN), has been assessed in patients with Parkinson’s disease (PD) during the immediate postoperative setting. In these studies, aDBS was shown to be at least as effective as conventional DBS (cDBS), while stimulation time and side effects were reduced. However, the effect of aDBS on motor symptoms and stimulation-induced side effects during the chronically implanted phase (after the stun effect of DBS placement has disappeared) has not yet been determined. Methods and Analysis: This protocol describes a single-centre clinical study in which aDBS will be tested in 12 patients with PD undergoing battery replacement, with electrodes implanted in the STN, and as a proof of concept in the internal globus pallidus. Patients included will be allocated in a pseudo-randomised fashion to a three-condition (no stimulation/cDBS/ aDBS), cross-over design. A battery of tests will be conducted and recorded during each condition, which aim to measure the severity of motor symptoms and side effects. These tests include a tablet-based tapping test, a subscale of the Movement Disorder Society-unified Parkinson’s disease rating scale (subMDS-UPDRS), the Speech Intelligibility Test (SIT) and a tablet-based version of the Stroop test. SubMDS-UPDRS and SIT recordings will be blindly assessed by independent raters. Data will be analysed using a linear mixed-effects model. Ethics and Dissemination: This protocol was approved by the Ethical Committee of the University Medical Centre Groningen, where the study will be carried out. Data management and compliance to research policies and standards of our centre, including data privacy, storage and veracity, will be controlled by an independent monitor. All the scientific findings derived from this protocol are aimed to be made public through publication of articles in international journals. Trial Registration Number: NTR 5456; Pre-results.</p

    Adaptive deep brain stimulation as advanced Parkinson's disease treatment (ADAPT study): protocol for a pseudo-randomised clinical study

    Get PDF
    INTRODUCTION: Adaptive deep brain stimulation (aDBS), based on the detection of increased beta oscillations in the subthalamic nucleus (STN), has been assessed in patients with Parkinson's disease (PD) during the immediate postoperative setting. In these studies, aDBS was shown to be at least as effective as conventional DBS (cDBS), while stimulation time and side effects were reduced. However, the effect of aDBS on motor symptoms and stimulation-induced side effects during the chronically implanted phase (after the stun effect of DBS placement has disappeared) has not yet been determined. METHODS AND ANALYSIS: This protocol describes a single-centre clinical study in which aDBS will be tested in 12 patients with PD undergoing battery replacement, with electrodes implanted in the STN, and as a proof of concept in the internal globus pallidus. Patients included will be allocated in a pseudo-randomised fashion to a three-condition (no stimulation/cDBS/ aDBS), cross-over design. A battery of tests will be conducted and recorded during each condition, which aim to measure the severity of motor symptoms and side effects. These tests include a tablet-based tapping test, a subscale of the Movement Disorder Society-unified Parkinson's disease rating scale (subMDS-UPDRS), the Speech Intelligibility Test (SIT) and a tablet-based version of the Stroop test. SubMDS-UPDRS and SIT recordings will be blindly assessed by independent raters. Data will be analysed using a linear mixed-effects model. ETHICS AND DISSEMINATION: This protocol was approved by the Ethical Committee of the University Medical Centre Groningen, where the study will be carried out. Data management and compliance to research policies and standards of our centre, including data privacy, storage and veracity, will be controlled by an independent monitor. All the scientific findings derived from this protocol are aimed to be made public through publication of articles in international journals. TRIAL REGISTRATION NUMBER: NTR 5456; Pre-results

    Toward adaptive deep brain stimulation for dystonia

    No full text
    The presence of abnormal neural oscillations within the cortico-basal ganglia-thalamo-cortical (CBGTC) network has emerged as one of the current principal theories to explain the pathophysiology of movement disorders. In theory, these oscillations can be used as biomarkers and thereby serve as a feedback signal to control the delivery of deep brain stimulation (DBS). This new form of DBS, dependent on different characteristics of pathological oscillations, is called adaptive DBS (aDBS), and it has already been applied in patients with Parkinson’s disease. In this review, the authors summarize the scientific research to date on pathological oscillations in dystonia and address potential biomarkers that might be used as a feedback signal for controlling aDBS in patients with dystonia
    corecore