8 research outputs found

    A digital audio equalizer with Optimal Error Feedback Structure

    No full text
    A digital audio equalizer (EQ) with optimal Error Feedback (EF) structure is presented and implemented based on FPGA in this paper. The signal processed by this EQ is 24bits digital audio signal of PCM format, and the coefficients are of 27 bits length. As the feedback coefficients are adjusted with the poles of the Optimal Error Feedback Structures, the distinguishing advantage of this proposed equalizer is that it can completely eliminate the truncation noise caused by the poles when comparing with current technology. ? 2010 IEEE.EI

    Chemical–Mechanical Polishing of 4H Silicon Carbide Wafers

    No full text
    Abstract 4H silicon carbide (4H‐SiC) holds great promise for high‐power and high‐frequency electronics, in which high‐quality 4H‐SiC wafers with both global and local planarization are cornerstones. Chemical–mechanical polishing (CMP) is the key processing technology in the planarization of 4H‐SiC wafers. Enhancing the performance of CMP is critical to improving the surface quality and reducing the processing cost of 4H‐SiC wafers. In this review, the superior properties of 4H‐SiC and the processing of 4H‐SiC wafers are introduced. The development of CMP with chemical, mechanical, and chemical–mechanical synergistic approaches to improve the performance of CMP is systematically reviewed. The basic principle and processing system of each improvement approach are presented. By comparing the material removal rate of CMP and the surface roughness of CMP‐treated 4H‐SiC wafers, the prospect on the chemical, mechanical, and chemical–mechanical synergistic improvement approaches is finally provided

    Ultrahigh conductivity in Weyl semimetal NbAs nanobelts

    No full text
    In two-dimensional (2D) systems, high mobility is typically achieved in low-carrier-density semiconductors and semimetals. Here, we discover that the nanobelts of Weyl semimetal NbAs maintain a high mobility even in the presence of a high sheet carrier density. We develop a growth scheme to synthesize single crystalline NbAs nanobelts with tunable Fermi levels. Owing to a large surface-to-bulk ratio, we argue that a 2D surface state gives rise to the high sheet carrier density, even though the bulk Fermi level is located near the Weyl nodes. A surface sheet conductance up to 5-100 S per □ is realized, exceeding that of conventional 2D electron gases, quasi-2D metal films, and topological insulator surface states. Corroborated by theory, we attribute the origin of the ultrahigh conductance to the disorder-tolerant Fermi arcs. The evidenced low-dissipation property of Fermi arcs has implications for both fundamental study and potential electronic applications

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    No full text
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field
    corecore