14,272 research outputs found

    Spin-orbit effects on the Larmor dispersion relation in GaAs quantum wells

    Get PDF
    We have studied the relevance of spin-orbit coupling to the dispersion 00009 relation of the Larmor resonance observed in inelastic light scattering and electron-spin resonance experiments on GaAs quantum wells. We show that the spin-orbit interaction, here described by a sum of Dresselhaus and Bychkov-Rashba terms, couples Zeeman and spin-density excitations. We have evaluated its contribution to the spin splitting as a function of the magnetic field BB, and have found that in the small BB limit, the spin-orbit interaction does not contribute to the spin splitting, whereas at high magnetic fields it yields a BB independent contribution to the spin splitting given by 2(λR2λD2)2(\lambda_R^2-\lambda_D^2), with λR,D\lambda_{R,D} being the intensity of the Bychkov-Rashba and Dresselhaus spin-orbit terms.Comment: To be published in Physical Review

    Novel software techniques for automatic microwave measurements

    Get PDF
    Although many microwave measurement techniques are heavily based on special purpose software, the application of modern software techniques like object oriented programming and new programming language like C++ is seldom used. The impact of such new software solutions can drastically improve the overall design of a microwave test set. The paper presents the design and implementation of a new multiport network analyzer with particular attention to the control program architecture. The use of Object Oriented Programming techniques results in a clear and easy to maintain solution which boosts both the user interface and the overall test set organizatio

    Imaging ionospheric inhomogeneities using spaceborne synthetic aperture radar

    Get PDF
    We present a technique and results of 2-D imaging of Faraday rotation and total electron content using spaceborne L band polarimetric synthetic aperture radar (PolSAR). The results are obtained by processing PolSAR data collected using the Phased Array type L-band Synthetic Aperture Radar (PALSAR) on board the Advanced Land Observation Satellite. Distinguished ionospheric inhomogeneities are captured in 2-D images from space with relatively high resolutions of hundreds of meters to a couple of kilometers in auroral-, middle-, and low-latitude regions. The observed phenomena include aurora-associated ionospheric enhancement arcs, the middle-latitude trough, traveling ionospheric disturbances, and plasma bubbles, as well as ionospheric irregularities. These demonstrate a new capability of spaceborne synthetic aperture radar that will not only provide measurements to correction of ionospheric effects in Earth science imagery but also significantly benefit ionospheric studies

    Spin and density longitudinal response of quantum dots in time-dependent local-spin-density approximation

    Get PDF
    The longitudinal dipole response of a quantum dot has been calculated in the far-infrared regime using local spin density functional theory. We have studied the coupling between the collective spin and density modes as a function of the magnetic field. We have found that the spin dipole mode and single particle excitations have a sizeable overlap, and that the magnetoplasmon modes can be excited by the dipole spin operator if the dot is spin polarized. The frequency of the dipole spin edge mode presents an oscillation which is clearly filling factor (ν\nu) related. We have found that the spin dipole mode is especially soft for even ν\nu values, becoming unstable for magnetic fields in the region 1<ν21 < \nu \leq 2. Results for selected number of electrons and confining potentials are discussed. An analytical model which reproduces the main features of the microscopic spectra has been developed.Comment: We have added some new references and minor changes on the mnuscript have been mad

    Quasi-ordinary power series and their zeta functions

    Get PDF
    The main objective of this paper is to prove the monodromy conjecture for the local Igusa zeta function of a quasi-ordinary polynomial of arbitrary dimension defined over a number field. In order to do it, we compute the local Denef-Loeser motivic zeta function ZDL(h,T)Z_{\text{DL}}(h,T) of a quasi-ordinary power series hh of arbitrary dimension over an algebraically closed field of characteristic zero from its characteristic exponents without using embedded resolution of singularities. This allows us to effectively represent ZDL(h,T)=P(T)/Q(T)Z_{\text{DL}}(h,T)=P(T)/Q(T) such that almost all the candidate poles given by Q(T)Q(T) are poles. Anyway, these candidate poles give eigenvalues of the monodromy action of the complex of nearby cycles on h1(0).h^{-1}(0). In particular we prove in this case the monodromy conjecture made by Denef-Loeser for the local motivic zeta function and the local topological zeta function. As a consequence, if hh is a quasi-ordinary polynomial defined over a number field we prove the Igusa monodromy conjecture for its local Igusa zeta function.Comment: 74 page

    Quasi-ordinary singularities and Newton trees

    Get PDF
    In this paper we study some properties of the class of nu-quasi-ordinary hypersurface singularities. They are defined by a very mild condition on its (projected) Newton polygon. We associate with them a Newton tree and characterize quasi-ordinary hypersurface singularities among nu-quasi-ordinary hypersurface singularities in terms of their Newton tree. A formula to compute the discriminant of a quasi-ordinary Weierstrass polynomial in terms of the decorations of its Newton tree is given. This allows to compute the discriminant avoiding the use of determinants and even for non Weierstrass prepared polynomials. This is important for applications like algorithmic resolutions. We compare the Newton tree of a quasi-ordinary singularity and those of its curve transversal sections. We show that the Newton trees of the transversal sections do not give the tree of the quasi-ordinary singularity in general. It does if we know that the Newton tree of the quasi-ordinary singularity has only one arrow.Comment: 32 page

    Quantum Evolution of Inhomogeneities in Curved Space

    Get PDF
    We obtain the renormalized equations of motion for matter and semi-classical gravity in an inhomogeneous space-time. We use the functional Schrodinger picture and a simple Gaussian approximation to analyze the time evolution of the λϕ4\lambda\phi^4 model, and we establish the renormalizability of this non-perturbative approximation. We also show that the energy-momentum tensor in this approximation is finite once we consider the usual mass and coupling constant renormalizations, without the need of further geometrical counter-terms.Comment: 22 page
    corecore