217 research outputs found

    The Effects of Technology-Assisted Listening Practice on Moodle on English-Majored Freshmen’s Motivation for Learning Listening at a University in The Mekong Delta

    Get PDF
    Purpose: This study was to investigate the effects of technology-assisted listening practice on MOODLE on English-majored freshmen's motivation for learning English listening at a university in the Mekong Delta. Approach/Methodology/Design: Two groups of sixty-four mixed-gender freshmen majoring in English language studies participated in this quasi-experimental study. To collect data, a pre-questionnaire, a post-questionnaire, and interviews were employed. Findings: The findings indicated that technology-assisted listening practice on MOODLE improved English-majored freshmen's listening motivation in specific areas for learning listening; however, this was a variance development. Practical Implications: This study was aimed to help language teachers and students benefit from technology-assisted listening teaching and learning. Originality/value: This study innovates by applying the MOODLE system to increase students’ listening motivation at a university in the Mekong Delta

    Anatomical Study of Femoral Condylar Index in Magnetic Resonance Imaging: Implication to Total Knee Replacement Surgery for Vietnamese People

    Get PDF
    BACKGROUND: The femoral rotation angle is important element in total knee replacement (TKR). AIM: To measure this angle, we determine through the axes: the transepicondylar axis (cTEA and sTEA), the posterior condylar axis (PCA), the anteroposterior axis (APA – Whiteside axis). METHODS: Measuring the angles created by the four axes: cTEA, sTEA, PCA and APA in magnetic resonance imaging (MRI); determining the femoral rotation angle and application TKR. RESULTS: the angle between APA and cTEA: 90.41° ± 3.35°, the angle between APA and sTEA: 94.47° ± 3.31°, the angle between APA and PCA: 96.40° ± 4.59°, the angle between cTEA and sTEA: 4.00° ± 1.02°, the angle between cTEA and PCA: 6.53° ± 2.55°, the angle between sTEA and PCA: 3.48° ± 1.91°. CONCLUSION: The angle between sTEA and PCA is the angle that best represents the femoral rotation angle. However, in case of sTEA or PCA is difficult to identify, it can be measure via the APA or cTEA. These angles don’t differ by age, gender and place of knee joint

    Thermoresistance of p-Type 4H–SiC Integrated MEMS Devices for High-Temperature Sensing

    Get PDF
    There is an increasing demand for the development and integration of multifunctional sensing modules into power electronic devices that can operate in high temperature environments. Here, the authors demonstrate the tunable thermoresistance of p‐type 4H–SiC for a wide temperature range from the room temperature to above 800 K with integrated flow sensing functionality into a single power electronic chip. The electrical resistance of p‐type 4H–SiC is found to exponentially decrease with increasing temperature to a threshold temperature of 536 K. The temperature coefficient of resistance (TCR) shows a large and negative value from −2100 to −7600 ppm K−1, corresponding to a thermal index of 625 K. From the threshold temperature of 536–846 K, the electrical resistance shows excellent linearity with a positive TCR value of 900 ppm K−1. The authors successfully demonstrate the integration of p–4H–SiC flow sensing functionality with a high sensitivity of 1.035 μA(m s−1)−0.5 mW−1. These insights in the electrical transport of p–4H–SiC aid to improve the performance of p–4H–SiC integrated temperature and flow sensing systems, as well as the design consideration and integration of thermal sensors into 4H–SiC power electronic systems operating at high temperatures of up to 846 K

    New primitives of controlled elements F2/4 for block ciphers

    Get PDF
    This paper develops the cipher design approach based on the use of data-dependent operations (DDOs). A new class of DDO based on the advanced controlled elements (CEs) is introduced, which is proven well suited to hardware implementations for FPGA devices. To increase the hardware implementation efficiency of block ciphers, while using contemporary FPGA devices there is proposed an approach to synthesis of fast block ciphers, which uses the substitution-permutation network constructed on the basis of the controlled elements F2/4 implementing the 2 x 2 substitutions under control of the four-bit vector. There are proposed criteria for selecting elements F2/4 and results on investigating their main cryptographic properties. It is designed a new fast 128-bit block cipher MM-128 that uses the elements F2/4 as elementary building block. The cipher possesses higher performance and requires less hardware resources for its implementation on the bases of FPGA devices than the known block ciphers. There are presented result on differential analysis of the cipher MM-12

    Measuring anti-bunching Effect from Single Dye Molecules and Single Quantum Dots

    Get PDF
    Antibunching is a quantum effect demonstrating clearly the quantum nature of the radiation field. Its detection through measurements of the second order correlation function is a direct proof of the presence of single molecule or single nano particle. In this paper we present the experimental setup of the Hanbury Brown - Twiss interferometer and the measurement results of the antibunching effect from single Rhodamine B dye molecules and single CdTe quantum dots in dilute solution. By fitting the second order correlation data, we derive a fluorescence lifetime of approximately 2 ns for Rhodamine B and 45 ns for CdTe quantum dots. Our results demonstrate an alternative way for determining the fluorescence lifetime using the antibunching effect

    A rapid and cost-effective metallization technique for 3C-SiC MEMS using direct wire bonding

    Get PDF
    This paper presents a simple, rapid and cost-effective wire bonding technique for single crystalline silicon carbide (3C–SiC) MEMS devices. Utilizing direct ultrasonic wedge–wedge bonding, we have demonstrated for the first time the direct bonding of aluminum wires onto SiC films for the characterization of electronic devices without the requirement for any metal deposition and etching process. The bonded joints between the Al wires and the SiC surfaces showed a relatively strong adhesion force up to approximately 12.6–14.5 mN and excellent ohmic contact. The bonded wire can withstand high temperatures above 420 K, while maintaining a notable ohmic contact. As a proof of concept, a 3C–SiC strain sensor was demonstrated, where the sensing element was developed based on the piezoresistive effect in SiC and the electrical contact was formed by the proposed direct-bonding technique. The SiC strain sensor possesses high sensitivity to the applied mechanical strains, as well as exceptional repeatability. The work reported here indicates the potential of an extremely simple direct wire bonding method for SiC for MEMS and microelectronic applications

    Nano strain-amplifier: making ultra-sensitive piezoresistance in nanowires possible without the need of quantum and surface charge effects

    Get PDF
    This paper presents an innovative nano strain-amplifier employed to significantly enhance the sensitivity of piezoresistive strain sensors. Inspired from the dogbone structure, the nano strain-amplifier consists of a nano thin frame released from the substrate, where nanowires were formed at the centre of the frame. Analytical and numerical results indicated that a nano strain-amplifier significantly increases the strain induced into a free standing nanowire, resulting in a large change in their electrical conductance. The proposed structure was demonstrated in p-type cubic silicon carbide nanowires fabricated using a top down process. The experimental data showed that the nano strain-amplifier can enhance the sensitivity of SiC strain sensors at least 5.4 times larger than that of the conventional structures. This result indicates the potential of the proposed strain-amplifier for ultra-sensitive mechanical sensing applications.Comment: 4 pages, 5 figure

    A hot-film air flow sensor for elevated temperatures

    Get PDF
    We report a novel packaging and experimental technique for characterizing thermal flow sensors at high temperatures. This paper first reports the fabrication of 3C-SiC (silicon carbide) on a glass substrate via anodic bonding, followed by the investigation of thermoresistive and Joule heating effects in the 3C-SiC nano-thin film heater. The high thermal coefficient of resistance of approximately −20 720 ppm/K at ambient temperature and −9287 ppm/K at 200 °C suggests the potential use of silicon carbide for thermal sensing applications in harsh environments. During the Joule heating test, a high-temperature epoxy and a brass metal sheet were utilized to establish the electric conduction between the metal electrodes and SiC heater inside a temperature oven. In addition, the metal wires from the sensor to the external circuitry were protected by a fiberglass insulating sheath to avoid short circuit. The Joule heating test ensured the stability of mechanical and Ohmic contacts at elevated temperatures. Using a hot-wire anemometer as a reference flow sensor, calibration tests were performed at 25 °C, 35 °C, and 45 °C. Then, the SiC hot-film sensor was characterized for a range of low air flow velocity, indicating a sensitivity of 5 mm−1 s. The air flow was established by driving a metal propeller connected to a DC motor and controlled by a microcontroller. The materials, metallization, and interconnects used in our flow sensor were robust and survived temperatures of around 200 °

    PURIFICATION OF PHOSPHOGYPSUM FOR USE AS CEMENT RETARDER BY SULPHURIC ACID TREATMENT

    Get PDF
    Phosphogypsum is a by-product of the wet phosphoric acid production. In this study, chemical compositions of phosphogypsum waste (PG) in Hai Phong diammonium phosphate plant (DAP1) and Lao Cai diammonium phosphate plant (DAP2) in Vietnam were surveyed for the purpose of gypsum recovery by P2O5, F removal to meet TCVN11833 for use treated gypsum as cement retarder. Studies of impurities P2O5, F, TOC removal by sulfuric acid 10 % at 28 0C was presented. The results found that the combination of a low concentration of sulfuric acid treatment, washing, lime neutralizing, and thermal treatment was successful in Phoshogypsum treatment for use as cement retarder. The cement test proved that treated PG could partially replace natural gypsum as a retarder.Keywords:  phosphogypsum treatment, phosphorus pentoxide removal, calcium sulfate transition phase, cement retarder.

    Thermal flow sensors for harsh environments

    Get PDF
    Flow sensing in hostile environments is of increasing interest for applications in the automotive, aerospace, and chemical and resource industries. There are thermal and non-thermal approaches for high-temperature flow measurement. Compared to their non-thermal counterparts, thermal flow sensors have recently attracted a great deal of interest due to the ease of fabrication, lack of moving parts and higher sensitivity. In recent years, various thermal flow sensors have been developed to operate at temperatures above 500 °C. Microelectronic technologies such as silicon-on-insulator (SOI), and complementary metal-oxide semiconductor (CMOS) have been used to make thermal flow sensors. Thermal sensors with various heating and sensing materials such as metals, semiconductors, polymers and ceramics can be selected according to the targeted working temperature. The performance of these thermal flow sensors is evaluated based on parameters such as thermal response time, flow sensitivity. The data from thermal flow sensors reviewed in this paper indicate that the sensing principle is suitable for the operation under harsh environments. Finally, the paper discusses the packaging of the sensor, which is the most important aspect of any high-temperature sensing application. Other than the conventional wire-bonding, various novel packaging techniques have been developed for high-temperature application
    corecore