221 research outputs found

    On the Convergence of Kergin and Hakopian Interpolants at Leja Sequences for the Disk

    Full text link
    We prove that Kergin interpolation polynomials and Hakopian interpolation polynomials at the points of a Leja sequence for the unit disk DD of a sufficiently smooth function ff in a neighbourhood of DD converge uniformly to ff on DD. Moreover, when ff is C∞C^\infty on DD, all the derivatives of the interpolation polynomials converge uniformly to the corresponding derivatives of ff

    Randomized controlled trial of artesunate or artemether in Vietnamese adults with severe falciparum malaria

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Both artemether and artesunate have been shown to be superior to quinine for the treatment of severe falciparum malaria in Southeast Asian adults, although the magnitude of the superiority has been greater for artesunate than artemether. These two artemisinin derivatives had not been compared in a randomized trial.</p> <p>Methods</p> <p>A randomized double blind trial in 370 adults with severe falciparum malaria; 186 received intramuscular artesunate (2.4 mg/kg immediately followed by 1.2 mg/kg at 12 hours then 24 hours then daily) and 184 received intramuscular artemether (3.6 mg per kilogram immediately followed by 1.8 mg per kilogram daily) was conducted in Viet Nam. Both drugs were given for a minimum of 72 hours.</p> <p>Results</p> <p>There were 13 deaths in the artesunate group (7 percent) and 24 in the artemether group (13 percent); P = 0.052; relative risk of death in the patients given artesunate, 0.54; (95 percent confidence interval 0.28-1.02). Parasitaemia declined more rapidly in the artesunate group. Both drugs were very well tolerated.</p> <p>Conclusions</p> <p>Intramuscular artesunate may be superior to intramuscular artemether for the treatment of severe malaria in adults.</p

    Influence of Hydrodynamic Interactions on Mechanical Unfolding of Proteins

    Full text link
    We incorporate hydrodynamic interactions in a structure-based model of ubiquitin and demonstrate that the hydrodynamic coupling may reduce the peak force when stretching the protein at constant speed, especially at larger speeds. Hydrodynamic interactions are also shown to facilitate unfolding at constant force and inhibit stretching by fluid flows.Comment: to be published in Journal of Physics: Condensed Matte

    Vertical stratification of the air microbiome in the lower troposphere

    Get PDF
    The troposphere constitutes the final frontier of global ecosystem research due to technical challenges arising from its size, low biomass, and gaseous state. Using a vertical testing array comprising a meteorological tower and a research aircraft, we conducted synchronized measurements of meteorological parameters and airborne biomass (n = 480) in the vertical air column up to 3,500 m. The taxonomic analysis of metagenomic data revealed differing patterns of airborne microbial community composition with respect to time of day and height above ground. The temporal and spatial resolution of our study demonstrated that the diel cycle of airborne microorganisms is a ground-based phenomenon that is entirely absent at heights >1,000 m. In an integrated analysis combining meteorological and biological data, we demonstrate that atmospheric turbulence, identified by potential temperature and high-frequency three-component wind measurements, is the key driver of bioaerosol dynamics in the lower troposphere. Multivariate regression analysis shows that at least 50% of identified airborne microbial taxa (n = ∌10,000) are associated with either ground or height, allowing for an understanding of dispersal patterns of microbial taxa in the vertical air column. Due to the interconnectedness of atmospheric turbulence and temperature, the dynamics of microbial dispersal are likely to be impacted by rising global temperatures, thereby also affecting ecosystems on the planetary surface

    Guanosine stimulates neurite outgrowth in PC12 cells via activation of heme oxygenase and cyclic GMP

    Get PDF
    Undifferentiated rat pheochromocytoma (PC12) cells extend neurites when cultured in the presence of nerve growth factor (NGF). Extracellular guanosine synergistically enhances NGF-dependent neurite outgrowth. We investigated the mechanism by which guanosine enhances NGF-dependent neurite outgrowth. Guanosine administration to PC12 cells significantly increased guanosine 3-5-cyclic monophosphate (cGMP) within the first 24 h whereas addition of soluble guanylate cyclase (sGC) inhibitors abolished guanosine-induced enhancement of NGF-dependent neurite outgrowth. sGC may be activated either by nitric oxide (NO) or by carbon monoxide (CO). \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} NωN^{\omega } \end{document}-Nitro-l-arginine methyl ester (l-NAME), a non-isozyme selective inhibitor of nitric oxide synthase (NOS), had no effect on neurite outgrowth induced by guanosine. Neither nNOS (the constitutive isoform), nor iNOS (the inducible isoform) were expressed in undifferentiated PC12 cells, or under these treatment conditions. These data imply that NO does not mediate the neuritogenic effect of guanosine. Zinc protoporphyrin-IX, an inhibitor of heme oxygenase (HO), reduced guanosine-dependent neurite outgrowth but did not attenuate the effect of NGF. The addition of guanosine plus NGF significantly increased the expression of HO-1, the inducible isozyme of HO, after 12 h. These data demonstrate that guanosine enhances NGF-dependent neurite outgrowth by first activating the constitutive isozyme HO-2, and then by inducing the expression of HO-1, the enzymes responsible for CO synthesis, thus stimulating sGC and increasing intracellular cGMP

    Hypofibrinolysis in diabetes: a therapeutic target for the reduction of cardiovascular risk

    Get PDF
    An enhanced thrombotic environment and premature atherosclerosis are key factors for the increased cardiovascular risk in diabetes. The occlusive vascular thrombus, formed secondary to interactions between platelets and coagulation proteins, is composed of a skeleton of fibrin fibres with cellular elements embedded in this network. Diabetes is characterised by quantitative and qualitative changes in coagulation proteins, which collectively increase resistance to fibrinolysis, consequently augmenting thrombosis risk. Current long-term therapies to prevent arterial occlusion in diabetes are focussed on anti-platelet agents, a strategy that fails to address the contribution of coagulation proteins to the enhanced thrombotic milieu. Moreover, antiplatelet treatment is associated with bleeding complications, particularly with newer agents and more aggressive combination therapies, questioning the safety of this approach. Therefore, to safely control thrombosis risk in diabetes, an alternative approach is required with the fibrin network representing a credible therapeutic target. In the current review, we address diabetes-specific mechanistic pathways responsible for hypofibrinolysis including the role of clot structure, defects in the fibrinolytic system and increased incorporation of anti-fibrinolytic proteins into the clot. Future anti-thrombotic therapeutic options are discussed with special emphasis on the potential advantages of modulating incorporation of the anti-fibrinolytic proteins into fibrin networks. This latter approach carries theoretical advantages, including specificity for diabetes, ability to target a particular protein with a possible favourable risk of bleeding. The development of alternative treatment strategies to better control residual thrombosis risk in diabetes will help to reduce vascular events, which remain the main cause of mortality in this condition
    • 

    corecore