33 research outputs found

    High Sensitivity Electrochemical Cholesterol Sensor Utilizing a Vertically Aligned Carbon Nanotube Electrode with Electropolymerized Enzyme Immobilization

    Get PDF
    In this report, a new cholesterol sensor is developed based on a vertically aligned CNT electrode with two-step electrochemical polymerized enzyme immobilization. Vertically aligned CNTs are selectively grown on a 1 mm2 window of gold coated SiO2/Si substrate by thermal chemical vapor deposition (CVD) with gravity effect and water-assisted etching. CNTs are then simultaneously functionalized and enzyme immobilized by electrochemical polymerization of polyaniline and cholesterol enzymes. Subsequently, ineffective enzymes are removed and new enzymes are electrochemically recharged. Scanning electron microscopic characterization indicates polymer-enzyme nanoparticle coating on CNT surface. Cyclic voltammogram (CV) measurements in cholesterol solution show the oxidation and reduction peaks centered around 450 and −220 mV, respectively. An approximately linear relationship between the cholesterol concentration and the response current could be observed in the concentration range of 50–300 mg/dl with a sensitivity of approximately 0.22 μA/mg·dl−1, which is considerably higher compared to previously reported CNT bioprobe. In addition, good specificity toward glucose, uric acid acetaminophen and ascorbic acid have been obtained. Moreover, sensors have satisfactory stability, repeatability and life time. Therefore, the electropolymerized CNT bioprobe is promising for cholesterol detection in normal cholesterol concentration in human blood

    Multi-Walled Carbon Nanotube-Doped Tungsten Oxide Thin Films for Hydrogen Gas Sensing

    Get PDF
    In this work we have fabricated hydrogen gas sensors based on undoped and 1 wt% multi-walled carbon nanotube (MWCNT)-doped tungsten oxide (WO3) thin films by means of the powder mixing and electron beam (E-beam) evaporation technique. Hydrogen sensing properties of the thin films have been investigated at different operating temperatures and gas concentrations ranging from 100 ppm to 50,000 ppm. The results indicate that the MWCNT-doped WO3 thin film exhibits high sensitivity and selectivity to hydrogen. Thus, MWCNT doping based on E-beam co-evaporation was shown to be an effective means of preparing hydrogen gas sensors with enhanced sensing and reduced operating temperatures. Creation of nanochannels and formation of p-n heterojunctions were proposed as the sensing mechanism underlying the enhanced hydrogen sensitivity of this hybridized gas sensor. To our best knowledge, this is the first report on a MWCNT-doped WO3 hydrogen sensor prepared by the E-beam method

    Nanomechanics of individual aerographite tetrapods

    Get PDF
    R.A., O.L. and K.S. would like to thank the German Research Foundation (DFG) for the financial support under schemes AD 183/17-1 and SFB 986-TP-B1, respectively, and the Graphene FET Flagship. R.M. and D.E. would like to thank for financial support from Latvian Council of Science, no. 549/2012. N.M.P. is supported by the European Research Council (ERC PoC 2015 SILKENE no. 693670) and by the European Commission H2020 under the Graphene Flagship (WP14 ‘Polymer Composites’, no. 696656) and under the FET Proactive (‘Neurofibres’ no. 732344). S.S. acknowledges support from SILKENE

    Accurate Empirical Path Loss Models with Route Classification for mmWave Communications

    No full text
    This paper presents accurate empirical path loss models with route classification for the high band frequency of 5 G wireless. Propagation path routes are mainly classified into line of sight (LOS) and non-line-of-sight (NLOS). The NLOS routes are classified into 2 separate routes, namely, Hard_NLOS and Soft_NLOS. Their path loss models include free-space loss (Lfs) and multiscreen diffraction loss (Lmsd) together with the reflection from the building blocks. However, these NLOS routes can be combined into a single formula. The path loss models were fitted with measured path loss data at frequencies of 28 GHz and 73 GHz. These models are compared with four 5G empirical models, namely 5GCM, 3GPP, METIS, and mmMAGIC. The results show that the separated route models provide good agreement, especially for the hard routes compared with those models and provide the minimum MAE of 4.45 dB, 4.34 dB, and 6.72 dB for the hard route, soft route, and an all-NLOS route, respectively, for the dual-band frequency

    Multi-Boundary Empirical Path Loss Model for 433 MHz WSN in Agriculture Areas Using Fuzzy Linear Regression

    No full text
    Path loss models are essential tools for estimating expected large-scale signal fading in a specific propagation environment during wireless sensor network (WSN) design and optimization. However, variations in the environment may result in prediction errors due to uncertainty caused by vegetation growth, random obstruction or climate change. This study explores the capability of multi-boundary fuzzy linear regression (MBFLR) to establish uncertainty relationships between related variables for path loss predictions of WSN in agricultural farming. Measurement campaigns along various routes in an agricultural area are conducted to obtain terrain profile data and path losses of radio signals transmitted at 433 MHz. Proposed models are fitted using measured data with “initial membership level” (μAI). The boundaries are extended to cover the uncertainty of the received signal strength indicator (RSSI) and distance relationship. The uncertainty not captured in normal measurement datasets between transmitter and receiving nodes (e.g., tall grass, weed, and moving humans and/or animals) may cause low-quality signal or disconnectivity. The results show the possibility of RSSI data in MBFLR supported at an μAI of 0.4 with root mean square error (RMSE) of 0.8, 1.2, and 2.6 for short grass, tall grass, and people motion, respectively. Breakpoint optimization helps provide prediction accuracy when uncertainty occurs. The proposed model determines the suitable coverage for acceptable signal quality in all environmental situations

    NEW UPPER AND LOWER BOUNDS LINE OF SIGHT PATH LOSS MODELS FOR MOBILE PROPAGATION IN BUILDINGS

    No full text
    This paper proposes a method to predict line-of-sight (LOS) path loss in buildings. We performed measurements in two different type of buildings at a frequency of 1.8 GHz and propose new upper and lower bounds path loss models which depend on max and min values of sample path loss data. This makes our models limit path loss within the boundary lines. The models include time-variant effects such as people moving and cars in parking areas with their influence on wave propagation that is very high.  The results have shown that the proposed models will be useful for the system and cell design of indoor wireless communication systems

    Enhancement of H2S-sensing performances with Fe-doping in CaCu3Ti4O12 thin films prepared by a sol-gel method

    No full text
    In this work, the effects of Fe-doping on structural and gas-sensing properties of CaCu3Ti4O12 (CCTO) thin film prepared by a sol-gel method were systematically studied. Sol-gel-derived CCTO thin films with different Fe-doping concentrations were deposited on alumina substrates by spin-coating and Au/Cr interdigitated electrodes were patterned onto the films by photolithography, sputtering and lift-off processes. Characterizations by X-ray diffraction, field emission scanning electron microscopy, energy dispersive X-ray spectroscopy, Raman spectroscopy, X-ray photoemission spectroscopy and X-ray absorption near edge structure confirmed the perovskite CCTO phase with TiO2 and CuO secondary phases and suggested the substitution of Fe3+ ions at Ti4+ sites of CCTO structure. From gas-sensing measurements, Fe dopants greatly enhance H2S response, response time and H2S selectivity against NH3, CO, C2H2, CH4, ethanol and NO2. In particular, 9 wt% (∼3 at%) Fe-doped CCTO sensor exhibited the highest response of ∼126 to 10 ppm H2S, which was more than one order of magnitude higher than that of the undoped CCTO sensor at a low optimum operating temperature of 250 °C. The roles of Fe-dopant on gas-sensing mechanisms of CCTO sensor were proposed.Fil: Pongpaiboonkul, Suriyong. Chulalongkorn University; TailandiaFil: Phokharatkul, Ditsayut. Nanoelectronics and MEMS Laboratory; TailandiaFil: Hodak, Jose Hector. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Chulalongkorn University; TailandiaFil: Wisitsoraat, Anurat. Nanoelectronics and MEMS Laboratory; TailandiaFil: Hodak, Satreerat K.. Chulalongkorn University; Tailandi
    corecore