27 research outputs found

    Influenza A viral loads in respiratory samples collected from patients infected with pandemic H1N1, seasonal H1N1 and H3N2 viruses

    Get PDF
    BACKGROUND: Nasopharyngeal aspirate (NPA), nasal swab (NS), and throat swab (TS) are common specimens used for diagnosis of respiratory virus infections based on the detection of viral genomes, viral antigens and viral isolation. However, there is no documented data regarding the type of specimen that yields the best result of viral detection. In this study, quantitative real time RT-PCR specific for M gene was used to determine influenza A viral loads present in NS, NPA and TS samples collected from patients infected with the 2009 pandemic H1N1, seasonal H1N1 and H3N2 viruses. Various copy numbers of RNA transcripts derived from recombinant plasmids containing complete M gene insert of each virus strain were assayed by RT-PCR. A standard curve for viral RNA quantification was constructed by plotting each Ct value against the log quantity of each standard RNA copy number. RESULTS: Copy numbers of M gene were obtained through the extrapolation of Ct values of the test samples against the corresponding standard curve. Among a total of 29 patients with severe influenza enrolled in this study (12 cases of the 2009 pandemic influenza, 5 cases of seasonal H1N1 and 12 cases of seasonal H3N2 virus), NPA was found to contain significantly highest amount of viral loads and followed in order by NS and TS specimen. Viral loads among patients infected with those viruses were comparable regarding type of specimen analyzed. CONCLUSION: Based on M gene copy numbers, we conclude that NPA is the best specimen for detection of influenza A viruses, and followed in order by NS and TS

    Low Frequency of Infection with Avian Influenza Virus (H5N1) among Poultry Farmers, Thailand, 2004

    Get PDF
    In Thai provinces where avian influenza outbreaks in poultry had been confirmed in the preceding 6 months, serum from 322 poultry farmers was tested for antibodies to avian influenza virus subtype H5N1 by microneutralization assay. No study participant met the World Health Organization serologic criteria for confirmed infection

    Influenza A H5N1 Replication Sites in Humans

    Get PDF
    Tissue tropism and pathogenesis of influenza A virus subtype H5N1 disease in humans is not well defined. In mammalian experimental models, H5N1 influenza is a disseminated disease. However, limited previous data from human autopsies have not shown evidence of virus dissemination beyond the lung. We investigated a patient with fatal H5N1 influenza. Viral RNA was detected by reverse transcription–polymerase chain reaction in lung, intestine, and spleen tissues, but positive-stranded viral RNA indicating virus replication was confined to the lung and intestine. Viral antigen was detected in pneumocytes by immunohistochemical tests. Tumor necrosis factor-α mRNA was seen in lung tissue. In contrast to disseminated infection documented in other mammals and birds, H5N1 viral replication in humans may be restricted to the lung and intestine, and the major site of H5N1 viral replication in the lung is the pneumocyte

    A Novel Pathogenic Mechanism of Highly Pathogenic Avian Influenza H5N1 Viruses Involves Hemagglutinin Mediated Resistance to Serum Innate Inhibitors

    Get PDF
    In this study, the effect of innate serum inhibitors on influenza virus infection was addressed. Seasonal influenza A(H1N1) and A(H3N2), 2009 pandemic A(H1N1) (H1N1pdm) and highly pathogenic avian influenza (HPAI) A(H5N1) viruses were tested with guinea pig sera negative for antibodies against all of these viruses as evaluated by hemagglutination-inhibition and microneutralization assays. In the presence of serum inhibitors, the infection by each virus was inhibited differently as measured by the amount of viral nucleoprotein produced in Madin-Darby canine kidney cells. The serum inhibitors inhibited seasonal influenza A(H3N2) virus the most, while the effect was less in seasonal influenza A(H1N1) and H1N1pdm viruses. The suppression by serum inhibitors could be reduced by heat inactivation or treatment with receptor destroying enzyme. In contrast, all H5N1 strains tested were resistant to serum inhibitors. To determine which structure (hemagglutinin (HA) and/or neuraminidase (NA)) on the virus particles that provided the resistance, reverse genetics (rg) was applied to construct chimeric recombinant viruses from A/Puerto Rico/8/1934(H1N1) (PR8) plasmid vectors. rgPR8-H5 HA and rgPR8-H5 HANA were resistant to serum inhibitors while rgPR8-H5 NA and PR8 A(H1N1) parental viruses were sensitive, suggesting that HA of HPAI H5N1 viruses bestowed viral resistance to serum inhibition. These results suggested that the ability to resist serum inhibition might enable the viremic H5N1 viruses to disseminate to distal end organs. The present study also analyzed for correlation between susceptibility to serum inhibitors and number of glycosylation sites present on the globular heads of HA and NA. H3N2 viruses, the subtype with highest susceptibility to serum inhibitors, harbored the highest number of glycosylation sites on the HA globular head. However, this positive correlation cannot be drawn for the other influenza subtypes

    Serological Response to the 2009 Pandemic Influenza A (H1N1) Virus for Disease Diagnosis and Estimating the Infection Rate in Thai Population

    Get PDF
    BACKGROUND: Individuals infected with the 2009 pandemic virus A(H1N1) developed serological response which can be measured by hemagglutination-inhibition (HI) and microneutralization (microNT) assays. METHODOLOGY/PRINCIPAL FINDINGS: MicroNT and HI assays for specific antibody to the 2009 pandemic virus were conducted in serum samples collected at the end of the first epidemic wave from various groups of Thai people: laboratory confirmed cases, blood donors and health care workers (HCW) in Bangkok and neighboring province, general population in the North and the South, as well as archival sera collected at pre- and post-vaccination from vaccinees who received influenza vaccine of the 2006 season. This study demonstrated that goose erythrocytes yielded comparable HI antibody titer as compared to turkey erythrocytes. In contrast to the standard protocol, our investigation found out the necessity to eliminate nonspecific inhibitor present in the test sera by receptor destroying enzyme (RDE) prior to performing microNT assay. The investigation in pre-pandemic serum samples showed that HI antibody was more specific to the 2009 pandemic virus than NT antibody. Based on data from pre-pandemic sera together with those from the laboratory confirmed cases, HI antibody titers ≥ 40 for adults and ≥ 20 for children could be used as the cut-off level to differentiate between the individuals with or without past infection by the 2009 pandemic virus. CONCLUSIONS/SIGNIFICANCE: Based on the cut-off criteria, the infection rates of 7 and 12.8% were estimated in blood donors and HCW, respectively after the first wave of the 2009 influenza pandemic. Among general population, the infection rate of 58.6% was found in children versus 3.1% in adults

    International laboratory comparison of influenza microneutralization assays for A(H1N1)pdm09, A(H3N2), and A(H5N1) influenza viruses by CONSISE

    Get PDF
    The microneutralization assay is commonly used to detect antibodies to influenza virus, and multiple protocols are used worldwide. These protocols differ in the incubation time of the assay as well as in the order of specific steps, and even within protocols there are often further adjustments in individual laboratories. The impact these protocol variations have on influenza serology data is unclear. Thus, a laboratory comparison of the 2-day enzyme-linked immunosorbent assay (ELISA) and 3-day hemagglutination (HA) microneutralization (MN) protocols, using A(H1N1)pdm09, A(H3N2), and A(H5N1) viruses, was performed by the CONSISE Laboratory Working Group. Individual laboratories performed both assay protocols, on multiple occasions, using different serum panels. Thirteen laboratories from around the world participated. Within each laboratory, serum sample titers for the different assay protocols were compared between assays to determine the sensitivity of each assay and were compared between replicates to assess the reproducibility of each protocol for each laboratory. There was good correlation of the results obtained using the two assay protocols in most laboratories, indicating that these assays may be interchangeable for detecting antibodies to the influenza A viruses included in this study. Importantly, participating laboratories have aligned their methodologies to the CONSISE consensus 2-day ELISA and 3-day HAMNassay protocols to enable better correlation of these assays in the future
    corecore