28,613 research outputs found

    The atomistic structure and energy of nascent dislocation loops

    Get PDF
    An harmonic lattice theory is used, in conjunction with Mura's theory of eigendistorsions, to study the structure and energetics of nascent dislocation loops in face-centred-cubic (FCC) crystals. An analytical expression for the activation energies of such loops is derived. The results obtained herein indicate that thermal activation of small dislocation loops is possible at high stress levels such as those found in the vicinity of a crack tip. The implications of these results in understanding phenomena such as the brittle-ductile transition are discussed

    Sandblasting nozzle

    Get PDF
    A nozzle for use with abrasive and/or corrosive materials is formed of sintered ceramic compositions having high temperature oxidation resistance, high hardness and high abrasion and corrosion resistance. The ceramic may be a binary solid solution of a ceramic oxide and silicon nitride, and preferably a ternary solid solution of a ceramic oxide, silicon nitride and aluminum nitride. The ceramic oxide is selected from a group consisting of Al2O3, Y2O3 and Cr2O3, or mixtures of those compounds. Titanium carbide particles are dispersed in the ceramic mixture before sintering. The nozzles are encased for protection from external forces while in use by a metal or plastic casing

    Partial information decomposition as a unified approach to the specification of neural goal functions

    Get PDF
    In many neural systems anatomical motifs are present repeatedly, but despite their structural similarity they can serve very different tasks. A prime example for such a motif is the canonical microcircuit of six-layered neo-cortex, which is repeated across cortical areas, and is involved in a number of different tasks (e.g. sensory, cognitive, or motor tasks). This observation has spawned interest in finding a common underlying principle, a ‘goal function’, of information processing implemented in this structure. By definition such a goal function, if universal, cannot be cast in processing-domain specific language (e.g. ‘edge filtering’, ‘working memory’). Thus, to formulate such a principle, we have to use a domain-independent framework. Information theory offers such a framework. However, while the classical framework of information theory focuses on the relation between one input and one output (Shannon’s mutual information), we argue that neural information processing crucially depends on the combination of multiple inputs to create the output of a processor. To account for this, we use a very recent extension of Shannon Information theory, called partial information decomposition (PID). PID allows to quantify the information that several inputs provide individually (unique information), redundantly (shared information) or only jointly (synergistic information) about the output. First, we review the framework of PID. Then we apply it to reevaluate and analyze several earlier proposals of information theoretic neural goal functions (predictive coding, infomax and coherent infomax, efficient coding). We find that PID allows to compare these goal functions in a common framework, and also provides a versatile approach to design new goal functions from first principles. Building on this, we design and analyze a novel goal function, called ‘coding with synergy’, which builds on combining external input and prior knowledge in a synergistic manner. We suggest that this novel goal function may be highly useful in neural information processing

    Experimental Verification of a Depth Controller using Model Predictive Control with Constraints onboard a Thruster Actuated AUV

    Get PDF
    In this work a depth and pitch controller for an autonomous underwater vehicle (AUV) is developed. This controller uses the model predictive control method to manoeuvre the vehicle whilst operating within the defined constraints of the AUV actuators. Experimental results are given for the AUV performing a step change in depth whilst maintaining zero pitch

    Supersymmetry with Grand Unification

    Full text link
    Supersymmetry (SUSY) has many well known attractions, especially in the context of Grand Unified Theories (GUTs). SUSY stabilizes scalar mass corrections (the hierarchy problem), greatly reduces the number of free parameters, facilitates gauge coupling unification, and provides a plausible candidate for cosmological dark matter. In this conference report we survey some recent examples of progress in SUSY-GUT applications.Comment: Talk V. Barger at the Workshop on Physics at Current Accelerators and the Supercollider, Argonne, June 1993, 15 pages + 12 PS figures included (uuencoded), (correct author list in header) MAD/PH/78

    Quasicontinuum Models of Interfacial Structure and Deformation

    Get PDF
    Microscopic models of the interaction between grain boundaries (GBs) and both dislocations and cracks are of importance in understanding the role of microstructure in altering the mechanical properties of a material. A recently developed mixed atomistic and continuum method is extended to examine the interaction between GBs, dislocations and cracks. These calculations elucidate plausible microscopic mechanisms for these defect interactions and allow for the quantitative evaluation of critical parameters such as the stress to nucleate a dislocation at a step on a GB and the force needed to induce GB migration.Comment: RevTex, 4 pages, 4 figure
    • …
    corecore