2,613 research outputs found

    Biological Assessments of Six Selected Fishes, Amphibians, and Mussels in Illinois

    Get PDF
    ID: 8758; issued November 1, 1996INHS Technical Report prepared for Illinois Department of Natural Resources, Division of Natural Heritag

    Clinical Evaluation of the Appropriateness Use Criteria for Single-Photon Emission-Computed Tomography: Differences by Patient Population, Physician Specialty, and Patient Outcomes

    Get PDF
    Objectives. Determine outcome of the 2005 appropriateness use criteria (AUC) for SPECT in a diverse population of patients and physicians. Background. AUC for SPECT were the first cardiology document to identify 52 clinical indications for imaging, 49 of them for stress SPECT. AUC have been proposed as cornerstone of responsible use of perfusion imaging. Methods. 585 consecutive patients undergoing SPECT were evaluated prospectively. Appropriateness was examined for demographic variables, clinical variables, and for physician and patient subgroups. Combined end-point of total mortality, cardiac revascularization, and cardiac admissions at 1 year post SPECT was evaluated. Results. SPECT indications were: appropriate, 63%; uncertain, 20%; inappropriate, 14%; not assigned, 3%. Most appropriate SPECT were observed in patients with known coronary disease (72%), chest pain syndrome (89%), high pre-test likelihood of disease (100%), men (70%), inpatients (72%), and cardiovascular physicians' referrals (69%). End-point was reached in 53 patients (97.4% follow up). Unadjusted event rates were: appropriate (12%), uncertain (7.1%), inappropriate (2.4%) SPECT (P = .01). Conclusion. Appropriateness of SPECT differs in subgroups of patients and physicians. Clinically significant outcomes occur more frequently in the appropriate stress SPECT group. Focused efforts are need for outpatients, asymptomatic patients, women, and non-cardiovascular physicians

    Cloud system resolving model study of the roles of deep convection for photo-chemistry in the TOGA COARE/CEPEX region

    Get PDF
    International audienceA cloud system resolving model including photo-chemistry (CSRMC) has been developed based on a prototype version of the Weather Research and Forecasting (WRF) model and is used to study influences of deep convection on chemistry in the TOGA COARE/CEPEX region. Lateral boundary conditions for trace gases are prescribed from global chemistry-transport simulations, and the vertical advection of trace gases by large scale dynamics, which is not reproduced in a limited area cloud system resolving model, is taken into account. The influences of deep convective transport and of lightning on NOx, O3, and HOx(=HO2+OH), in the vicinity of the deep convective systems are investigated in a 7-day 3-D 248×248 km2 horizontal domain simulation and several 2-D sensitivity runs with a 500 km horizontal domain. Mid-tropospheric entrainment is more important on average for the upward transport of O3 in the 3-D run than in the 2-D runs, but at the same time undiluted O3-poor air from the marine boundary layer reaches the upper troposphere more frequently in the 3-D run than in the 2-D runs, indicating the presence of undiluted convective cores. In all runs, in situ lightning is found to have only minor impacts on the local O3 budget. Near zero O3 volume mixing ratios due to the reaction with lightning-produced NO are only simulated in a 2-D sensitivity run with an extremely high number of NO molecules per flash, which is outside the range of current estimates. The fraction of NOx chemically lost within the domain varies between 20 and 24% in the 2-D runs, but is negligible in the 3-D run, in agreement with a lower average NOx concentration in the 3-D run despite a greater number of flashes. Stratosphere to troposphere transport of O3 is simulated to occur episodically in thin filaments in the 2-D runs, but on average net upward transport of O3 from below ~16 km is simulated in association with mean large scale ascent in the region. Ozone profiles in the TOGA COARE/CEPEX region are suggested to be strongly influenced by the intra-seasonal (Madden-Julian) oscillation

    Modelling tracer transport by a cumulus ensemble: lateral boundary conditions and large-scale ascent

    No full text
    International audienceThe vertical transport of tracers by a cumulus ensemble at the TOGA-COARE site is modelled during a 7 day episode using 2-D and 3-D cloud-resolving setups of the Weather Research and Forecast (WRF) model. Lateral boundary conditions (LBC) for tracers, water vapour, and wind are specified and the horizontal advection of trace gases across the lateral domain boundaries is considered. Furthermore, the vertical advection of trace gases by the large-scale motion (short: vertical large-scale advection of tracers, VLSAT) is considered. It is shown, that including VLSAT partially compensates the calculated net downward transport from the middle and upper troposphere (UT) due to the mass balancing mesoscale subsidence induced by deep convection. Depending on whether the VLSAT term is added or not, modelled domain averaged vertical tracer profiles can differ significantly. Differences between a 2-D and a 3-D model run were mainly attributed to an increase in horizontal advection across the lateral domain boundaries due to the meridional wind component not considered in the 2-D setup

    Model sensitivity studies regarding the role of the retention coefficient for the scavenging and redistribution of highly soluble trace gases by deep convective cloud systems

    No full text
    International audienceThe role of the retention coefficient (i.e. the fraction of a dissolved trace gas which is retained in hydrometeors during freezing) for the scavenging and redistribution of highly soluble trace gases by deep convective cloud systems is investigated using a modified version of the Weather Research and Forecasting (WRF) model. Results from cloud system resolving model runs (in which deep convection is initiated by small random perturbations in association with so-called "large scale forcings (LSF)") for a tropical oceanic (TOGA COARE) and a mid-latitude continental case (ARM) are compared to two runs in which bubbles are used to initiate deep convection (STERAO, ARM). In the LSF runs, scavenging is found to almost entirely prevent a highly soluble tracer initially located in the lowest 1.5 km of the troposphere from reaching the upper troposphere, independent of the retention coefficient. The release of gases from freezing hydrometeors leads to mixing ratio increases in the upper troposphere comparable to those calculated for insoluble trace gases only in the two runs in which bubbles are used to initiate deep convection. A comparison of the two ARM runs indicates that using bubbles to initiate deep convection may result in an overestimate of the influence of the retention coefficient on the vertical transport of highly soluble tracers. It is, however, found that the retention coefficient plays an important role for the scavenging and redistribution of highly soluble trace gases with a (chemical) source in the free troposphere and also for trace gases for which even relatively inefficient transport may be important. The large difference between LSF and bubble runs is attributed to differences in dynamics and microphysics in the inflow regions of the storms. The dependence of the results on the model setup indicates the need for additional model studies with a more realistic initiation of deep convection, e.g., considering effects of orography in a nested model setup

    The Gattini cameras for optical sky brightness measurements at Dome C, Antarctica

    Get PDF
    The Gattini cameras are two site testing instruments for the measurement of optical sky brightness, large area cloud cover and auroral detection of the night sky above the high altitude Dome C site in Antarctica. The cameras have been operating since installation in January 2006 and are currently at the end of the first Antarctic winter season. The cameras are transit in nature and are virtually identical both adopting Apogee Alta CCD detectors. By taking frequent images of the night sky we obtain long term cloud cover statistics, measure the sky background intensity as a function of solar and lunar altitude and phase and directly measure the spatial extent of bright aurora if present and when they occur. The full data set will return in December 2006 however a limited amount of data has been transferred via the Iridium network enabling preliminary data reduction and system evaluation. An update of the project is presented together with preliminary results from data taken since commencement of the winter season

    Speed impairs attending on the left: comparing attentional asymmetries for neglect patients in speeded and unspeeded cueing tasks

    Get PDF
    Visuospatial neglect after stroke is often characterized by a disengage deficit on a cued orienting task, in which individuals are disproportionately slower to respond to targets presented on the contralesional side of space following an ispilesional cue as compared to the reverse. The purpose of this study was to investigate the generality of the finding of a disengage deficit on another measure of cued attention, the temporal order judgment (TOJ) task, that does not depend upon speeded manual responses. Individuals with right hemisphere stroke with and without spatial neglect and older healthy controls (OHC) were tested with both a speeded RT cueing task and an unspeeded TOJ-with-cuing task. All stroke patients evidenced a disengage deficit on the speeded RT cueing task, although the size and direction of the bias was not associated with the severity of neglect. In contrast, few neglect patients showed a disengage deficit on the TOJ task. This discrepancy suggests that the disengage deficit may be related to task demands, rather than solely due to impaired attentional mechanisms per se. Further, the results of our study show that the disengage deficit is neither necessary nor sufficient for neglect to manifest

    The effects of alcohol on plasma lipid mediators of inflammation resolution in patients with Type 2 diabetes mellitus

    Get PDF
    Background Type 2 diabetes mellitus is characterized by peripheral insulin resistance and low-grade systemic inflammation. Inflammation resolution is recognised as an important process driven by specialised pro-resolving mediators of inflammation (SPMs) and has the potential to moderate chronic inflammation. Alcohol has the potential to affect synthesis of SPMs by altering key enzymes involved in SPM synthesis and may influence ongoing inflammation associated with Type 2 diabetes mellitus. Aims (i) To examine the effects of alcohol consumed as red wine on plasma SPM in men and women with Type 2 diabetes in a randomised controlled trial and (ii) compare baseline plasma SPM levels in the same patients with those of healthy volunteers. Methods Twenty-four patients with Type 2 diabetes mellitus were randomized to a three-period crossover study with men drinking red wine 300 ml/day (∼31 g alcohol/day) and women drinking red wine 230 ml/day (∼24 g alcohol/day), or equivalent volumes of dealcoholized red wine (DRW) or water, each for 4 weeks. The SPM 18-hydroxyeicosapentaenoic acid (18-HEPE), E-series resolvins (Rv) (RvE1-RvE3), 17-hydroxydocosahexaenoic acid (17-HDHA), and D-series resolvins (RvD1, 17R-RvD1, RvD2, RvD5), 14-hydroxydocosahexaenoic acid (14-HDHA) and Maresin 1 were measured at the end of each period. A baseline comparison of plasma SPM, hs CRP, lipids and glucose was made with healthy volunteers. Results Red wine did not differentially affect any of the SPM measured when compared with DRW or water. Baseline levels of the hs-CRP and the SPM 18-HEPE, 17-HDHA, RvD1 and 17R-RvD1 in patients with Type 2 diabetes mellitus were all significantly elevated compared with healthy controls and remained so after adjusting for age and gender. Conclusion Moderate alcohol consumption as red wine does not alter plasma SPM in patients with Type 2 diabetes mellitus. The elevation of SPM levels compared with healthy volunteers may be a homeostatic response to counter ongoing inflammation

    Mesocorticolimbic monoamine correlates of methamphetamine sensitization and motivation.

    Get PDF
    Methamphetamine (MA) is a highly addictive psychomotor stimulant, with life-time prevalence rates of abuse ranging from 5-10% world-wide. Yet, a paucity of research exists regarding MA addiction vulnerability/resiliency and neurobiological mediators of the transition to addiction that might occur upon repeated low-dose MA exposure, more characteristic of early drug use. As stimulant-elicited neuroplasticity within dopamine neurons innervating the nucleus accumbens (NAC) and prefrontal cortex (PFC) is theorized as central for addiction-related behavioral anomalies, we used a multi-disciplinary research approach in mice to examine the interactions between sub-toxic MA dosing, motivation for MA and mesocorticolimbic monoamines. Biochemical studies of C57BL/6J (B6) mice revealed short- (1 day), as well as longer-term (21 days), changes in extracellular dopamine, DAT and/or D2 receptors during withdrawal from 10, once daily, 2 mg/kg MA injections. Follow-up biochemical studies conducted in mice selectively bred for high vs. low MA drinking (respectively, MAHDR vs. MALDR mice), provided novel support for anomalies in mesocorticolimbic dopamine as a correlate of genetic vulnerability to high MA intake. Finally, neuropharmacological targeting of NAC dopamine in MA-treated B6 mice demonstrated a bi-directional regulation of MA-induced place-conditioning. These results extend extant literature for MA neurotoxicity by demonstrating that even subchronic exposure to relatively low MA doses are sufficient to elicit relatively long-lasting changes in mesocorticolimbic dopamine and that drug-induced or idiopathic anomalies in mesocorticolimbic dopamine may underpin vulnerability/resiliency to MA addiction

    Cloud system resolving model study of the roles of deep convection for photo-chemistry in the TOGA COARE/CEPEX region

    Get PDF
    A cloud system resolving model including photo-chemistry (CSRMC) has been developed based on a prototype version of the Weather Research and Forecasting (WRF) model and is used to study influences of deep convection on chemistry in the TOGA COARE/CEPEX region. Lateral boundary conditions for trace gases are prescribed from global chemistry-transport simulations, and the vertical advection of trace gases by large scale dynamics, which is not reproduced in a limited area cloud system resolving model, is taken into account. The influences of deep convective transport and of lightning on NO<sub>x</sub>, O<sub>3</sub>, and HO<sub>x</sub>(=HO<sub>2</sub>+OH), in the vicinity of the deep convective systems are investigated in a 7-day 3-D 248×248 km<sup>2</sup> horizontal domain simulation and several 2-D sensitivity runs with a 500 km horizontal domain. Mid-tropospheric entrainment is more important on average for the upward transport of O<sub>3</sub> in the 3-D run than in the 2-D runs, but at the same time undiluted O<sub>3</sub>-poor air from the marine boundary layer reaches the upper troposphere more frequently in the 3-D run than in the 2-D runs, indicating the presence of undiluted convective cores. In all runs, in situ lightning is found to have only minor impacts on the local O<sub>3</sub> budget. Near zero O<sub>3</sub> volume mixing ratios due to the reaction with lightning-produced NO are only simulated in a 2-D sensitivity run with an extremely high number of NO molecules per flash, which is outside the range of current estimates. The fraction of NO<sub>x</sub> chemically lost within the domain varies between 20 and 24% in the 2-D runs, but is negligible in the 3-D run, in agreement with a lower average NO<sub>x</sub> concentration in the 3-D run despite a greater number of flashes. Stratosphere to troposphere transport of O<sub>3</sub> is simulated to occur episodically in thin filaments in the 2-D runs, but on average net upward transport of O<sub>3</sub> from below ~16 km is simulated in association with mean large scale ascent in the region. Ozone profiles in the TOGA COARE/CEPEX region are suggested to be strongly influenced by the intra-seasonal (Madden-Julian) oscillation
    corecore