97 research outputs found

    Electrical and magnetic properties of the complete solid solution series between SrRuO3 and LaRhO3: Filling t2g versus tilting

    Get PDF
    A complete solid solution series between the t2g^4 perovskite ferromagnet SrRuO3 and the diamagnetic t2g^6 perovskite LaRhO3 has been prepared. The evolution with composition x in (SrRuO3)(1-x)(LaRhO3)(x) of the crystal structure and electrical and magnetic properties has been studied and is reported here. As x increases, the octahedral tilt angle gradually increases, along with the pseudocubic lattice parameter and unit cell volume. Electrical resistivity measurements reveal a compositionally driven metal to insulator transition between x = 0.1 and 0.2. Ferromagnetic ordering gives over to glassy magnetism for x > 0.3 and no magnetic ordering is found above 2 K for x > 0.5. M_sat and Theta_CW decrease with increasing x and remain constant after x = 0.5. The magnetism appears poised between localized and itinerant behavior, and becomes more localized with increasing x as evidenced by the evolution of the Rhodes-Wohlfarth ratio. mu_eff per Ru is equal to the quenched spin-only S value across the entire solid solution. Comparisons with Sr(1-x)Ca(x)RuO3 reinforce the important role of structural distortions in determining magnetic ground state. It is suggested that electrical transport and magnetic properties are not strongly coupled in this system

    Structural disorder, magnetism, and electrical and thermoelectric properties of pyrochlore Nd2Ru2O7

    Full text link
    Polycrystalline Nd2Ru2O7 samples have been prepared and examined using a combination of structural, magnetic, and electrical and thermal transport studies. Analysis of synchrotron X-ray and neutron diffraction patterns suggests some site disorder on the A-site in the pyrochlore sublattice: Ru substitutes on the Nd-site up to 7.0(3)%, regardless of the different preparative conditions explored. Intrinsic magnetic and electrical transport properties have been measured. Ru 4d spins order antiferromagnetically at 143 K as seen both in susceptibility and specific heat, and there is a corresponding change in the electrical resistivity behaviour. A second antiferromagnetic ordering transition seen below 10 K is attributed to ordering of Nd 4f spins. Nd2Ru2O7 is an electrical insulator, and this behaviour is believed to be independent of the Ru-antisite disorder on the Nd site. The electrical properties of Nd2Ru2O7 are presented in the light of data published on all A2Ru2O7 pyrochlores, and we emphasize the special structural role that Bi3+ ions on the A-site play in driving metallic behaviour. High-temperature thermoelectric properties have also been measured. When considered in the context of known thermoelectric materials with useful figures-of-merit, it is clear that Nd2Ru2O7 has excessively high electrical resistivity which prevents it from being an effective thermoelectric. A method for screening candidate thermoelectrics is suggested.Comment: 19 pages, 10 figure

    Structural and magnetic characterization of the complete delafossite solid solution (CuAlO2){1-x}(CuCrO2){x}

    Get PDF
    We have prepared the complete delafossite solid solution series between diamagnetic CuAlO2 and the t2g^3 frustrated antiferromagnet CuCrO2. The evolution with composition x in CuAl(1-x)Cr(x)O2 of the crystal structure and magnetic properties has been studied and is reported here. The room-temperature unit cell parameters follow the Vegard law and increase with x as expected. The effective moment is equal to the Cr^3+ spin-only S = 3/2 value throughout the entire solid solution. Theta is negative, indicating that the dominant interactions are antiferromagnetic, and its magnitude increases with Cr substitution. For dilute Cr compositions, J_BB was estimated by mean-field theory to be 2.0 meV. Despite the sizable Theta, long-range antiferromagnetic order does not develop until very large x, and is preceeded by glassy behavior. Data presented here, and that on dilute Al-substitution from Okuda et al., suggest that the reduction in magnetic frustration due to the presence of non-magnetic Al does not have as dominant an effect on magnetism as chemical disorder and dilution of the magnetic exchange. For all samples, the 5 K isothermal magnetization does not saturate in fields up to 5 T and minimal hysteresis is observed. The presence of antiferromagnetic interactions is clearly evident in the sub-Brillouin behavior with a reduced magnetization per Cr atom. An inspection of the scaled Curie plot reveals that significant short-range antiferromagnetic interactions occur in CuCrO2 above its Neel temperature, consistent with its magnetic frustration. Uncompensated short-range interactions are present in the Al-substituted samples and are likely a result of chemical disorder

    Electrochemistry of the [4Fe4S] Cluster in Base Excision Repair Proteins: Tuning the Redox Potential with DNA

    Get PDF
    Escherichia coli endonuclease III (EndoIII) and MutY are DNA glycosylases that contain [4Fe4S] clusters and that serve to maintain the integrity of the genome after oxidative stress. Electrochemical studies on highly oriented pyrolytic graphite (HOPG) revealed that DNA binding by EndoIII leads to a large negative shift in the midpoint potential of the cluster, consistent with stabilization of the oxidized [4Fe4S]^(3+) form. However, the smooth, hydrophobic HOPG surface is nonideal for working with proteins in the absence of DNA. In this work, we use thin film voltammetry on a pyrolytic graphite edge electrode to overcome these limitations. Improved adsorption leads to substantial signals for both EndoIII and MutY in the absence of DNA, and a large negative potential shift is retained with DNA present. In contrast, the EndoIII mutants E200K, Y205H, and K208E, which provide electrostatic perturbations in the vicinity of the cluster, all show DNA-free potentials within error of wild type; similarly, the presence of negatively charged poly-L-glutamate does not lead to a significant potential shift. Overall, binding to the DNA polyanion is the dominant effect in tuning the redox potential of the [4Fe4S] cluster, helping to explain why all DNA-binding proteins with [4Fe4S] clusters studied to date have similar DNA-bound potentials

    Caspase 8 and maspin are downregulated in breast cancer cells due to CpG site promoter methylation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Epigenetic changes associated with promoter DNA methylation results in silencing of several tumor suppressor genes that lead to increased risk for tumor formation and for progression of the cancer.</p> <p>Methods</p> <p>Methylation specific PCR (MSP) and bisulfite sequencing were used for determination of proapoptotic gene Caspase 8 (CASP8) and the tumor suppressor gene maspin promoter methylation in four breast cancer and two non-tumorigenic breast cell lines. Involvement of histone H3 methylation in those cell lines were examined by CHIP assay.</p> <p>Results</p> <p>The CpG sites in the promoter region of CASP8 and maspin were methylated in all four breast cancer cell lines but not in two non-tumorigenic breast cell lines. Demethylation agent 5-aza-2'-deoxycytidine (5-aza-dc) selectively inhibits DNA methyltransferases, DNMT3a and DNMT3b, and restored CASP8 and maspin gene expression in breast cancer cells. 5-aza-dc also reduced histone H3k9me2 occupancy on CASP8 promoter in SKBR3cells, but not in MCF-7 cells. Combination of histone deacetylase inhibitor Trichostatin A (TSA) and 5-aza-dc significant decrease in nuclear expression of Di-methyl histone H3-Lys27 and slight increase in acetyl histone H3-Lys9 in MCF-7 cells. CASP8 mRNA and protein level in MCF-7 cells were increased by the 5-aza-dc in combination with TSA. Data from our study also demonstrated that treatment with 5-FU caused a significant increase in unmethylated CASP8 and in CASP8 mRNA in all 3 cancer lines.</p> <p>Conclusions</p> <p>CASP8 and maspin expression were reduced in breast cancer cells due to promoter methylation. Selective application of demethylating agents could offer novel therapeutic opportunities in breast cancer.</p
    corecore